Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Methods ; 20(1): 59, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698384

ABSTRACT

BACKGROUND: Artemisia campestris L. (AC) leaves are widely recognized for their importance in traditional medicine. Despite the considerable amount of research conducted on this plant overworld, the chemical composition and the biological activity of the leaves grown in Tunisia remains poorly investigated. In this study of AC, a successive extraction method was employed (hexane, ethyl acetate and methanol) to investigate its bioactive constituents by LC-MS analysis, and their antioxidant, antibacterial, antifungal, and anticancer activities. RESULTS: Data analysis revealed diverse compound profiles in AC extracts. Methanolic and ethyl acetate extracts exhibited higher polyphenolic content and antioxidant activities, while Hexane showed superior phytosterol extraction. Ethyl acetate extract displayed potent antibacterial activity against multi-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Additionally, all extracts demonstrated, for the first time, robust antifungal efficacy against Aspergillus flavus and Aspergillus niger. Cytotoxicity assays revealed the significant impact of methanolic and ethyl acetate extracts on metastatic breast cancer and multiple myeloma, examined for the first time in our study. Moreover, further analysis on multiple myeloma cells highlighted that the ethyl acetate extract induced apoptotic and necrotic cell death and resulted in an S phase cell cycle blockage, underscoring its therapeutic potential. CONCLUSIONS: This investigation uncovers novel findings in Tunisian AC, notably the identification of lupeol, oleanolic acid, ursolic acid, stigmasterol and ß-sitosterol. The study sheds light on the promising role of AC extracts in therapeutic interventions and underscores the need for continued research to harness its full potential in medicine and pharmaceutical development.

2.
Int J Mol Sci ; 24(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37569595

ABSTRACT

Venoms are a rich source of bioactive compounds, and among them is leberagin-C (Leb-C), a disintegrin-like protein derived from the venom of Macrovipera lebetina transmediterrannea snakes. Leb-C has shown promising inhibitory effects on platelet aggregation. Previous studies have demonstrated that this SECD protein specifically targets α5ß1, αvß3, and αvß6 integrins through a mimic mechanism of RGD disintegrins. In our current study, we focused on exploring the potential effects of Leb-C on metastatic breast cancer. Our findings revealed that Leb-C disrupted the adhesion, migration, and invasion capabilities of MDA-MB-231 breast cancer cells and its highly metastatic D3H2LN sub-population. Additionally, we observed significant suppression of adhesion, migration, and invasion of human umbilical vein endothelial cells (HUVECs). Furthermore, Leb-C demonstrated a strong inhibitory effect on fibroblast-growth-factor-2-induced proliferation of HUVEC. We conducted in vivo experiments using nude mice and found that treatment with 2 µM of Leb-C resulted in a remarkable 73% reduction in D3H2LN xenograft tumor size. Additionally, quantification of intratumor microvessels revealed a 50% reduction in tumor angiogenesis in xenograft after 21 days of twice-weekly treatment with 2 µM of Leb-C. Collectively, these findings suggest the potential utility of this disintegrin-like protein for inhibiting aggressive and resistant metastatic breast cancer.


Subject(s)
Disintegrins , Triple Negative Breast Neoplasms , Animals , Mice , Humans , Disintegrins/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Mice, Nude , Platelet Aggregation , Human Umbilical Vein Endothelial Cells
3.
Nanomaterials (Basel) ; 12(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35564294

ABSTRACT

Candida and dermatophyte infections are difficult to treat due to increasing antifungal drugs resistance such as fluconazole, as well as the emergence of multi-resistance in clinical bacteria. Here, we first synthesized silver nanoparticles using aqueous fruit extracts from Scabiosa atropurpurea subsp. maritima (L.). The characterization of the AgNPs by means of UV, XRD, FTIR, and TEM showed that the AgNPs had a uniform spherical shape with average sizes of 40-50 nm. The biosynthesized AgNPs showed high antioxidant activity when investigated using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The AgNPs displayed strong antibacterial potential expressed by the maximum zone inhibition and the lowest MIC and MBC values. The AgNPs revealed a significant antifungal effect against the growth and biofilm of Candida species. In fact, the AgNPs were efficient against Trichophyton rubrum, Trichophyton interdigitale, and Microsporum canis. The antifungal mechanisms of action of the AgNPs seem to be due to the disruption of membrane integrity and a reduction in virulence factors (biofilm and hyphae formation and a reduction in germination). Finally, the silver nanoparticles also showed important cytotoxic activity against the human multiple myeloma U266 cell line and the human breast cancer cell line MDA-MB-231. Therefore, we describe new silver nanoparticles with promising biomedical application in the development of novel antimicrobial and anticancer agents.

4.
Cancers (Basel) ; 13(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34359648

ABSTRACT

Multiple myeloma (MM) is an incurable plasma cell malignancy with frequent patient relapse due to innate or acquired drug resistance. Cholesterol metabolism is reported to be altered in MM; therefore, we investigated the potential anti-myeloma activity of two cholesterol derivatives: the 5,6 α- and 5,6 ß-epoxycholesterol (EC) isomers. To this end, viability assays were used, and isomers were shown to exhibit important anti-tumor activity in vitro in JJN3 and U266 human myeloma cell lines (HMCLs) and ex vivo in myeloma patients' sorted CD138+ malignant cells. Moreover, we confirmed that 5,6 α-EC and 5,6 ß-EC induced oxiapoptophagy through concomitant oxidative stress and caspase-3-mediated apoptosis and autophagy. Interestingly, in combination treatment a synergistic interaction was observed between 5,6 α-EC and 5,6 ß-EC on myeloma cells. These data highlight a striking anti-tumor activity of 5,6 α-EC and 5,6 ß-EC bioactive molecules against human myeloma cells, paving the way for their potential role in future therapeutic strategies in MM.

5.
Environ Toxicol ; 36(5): 874-886, 2021 May.
Article in English | MEDLINE | ID: mdl-33393729

ABSTRACT

Echium arenarium Guss is a Mediterranean plant traditionally used in healing skin wound and it was reported exhibiting potent antioxidant, antibacterial, and antiparasitic activities. However, antitumoral activities of this plant have not yet been explored. Here we investigated for the first time, root (EARE) and aerial part (EAAPE) extracts of E. arenarium Guss to examine cytotoxicity and apoptosis activation pathway on U266 human multiple myeloma (MM) cell line. We demonstrated that EARE and EAAPE decreased U266 cell viability in a dose dependent manner. Based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, EARE was significantly two times more efficient (IC50 value 41 µg/ml) than EAAPE (IC50 value 82 µg/ml) considering 48 h of treatment. Furthermore, after 24 h of exposure to 100 µg/ml of EARE or EAAPE, cell cycle showed remarkable increase in sub-G1 population and a decrease of U266 cells proportion in G1 phase. In addition, EARE increased cell percentage in S phase. Moreover, analysis revealed that EAAPE or EARE induced apoptosis of U266 cells after 24 h of treatment. Interestingly, depolarization of mitochondrial membrane potential and activation of caspase 3/7 were demonstrated in treated U266 cells. Phytochemical analysis of E. arenarium extracts showed that EARE exhibited the highest content of total phenolic content. Interestingly, six phenolic compounds were identified. Myricitrin was the major compound in EARE, followed by luteolin 7-O-glucoside, resorcinol, polydatin, Trans-hydroxycinnamic acid, and hyperoside. These findings proved that an intrinsic mitochondria-mediated apoptosis pathway probably mediated the apoptotic effects of E. arenarium Guss extracts on U266 cells, and this will suggest several action plans to treat MM.


Subject(s)
Echium , Multiple Myeloma , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Mitochondria , Multiple Myeloma/drug therapy , Plant Components, Aerial , Plant Extracts
6.
PLoS One ; 5(4): e10124, 2010 Apr 12.
Article in English | MEDLINE | ID: mdl-20405031

ABSTRACT

Integrins are essential protagonists of the complex multi-step process of angiogenesis that has now become a major target for the development of anticancer therapies. We recently reported and characterized that MVL-PLA2, a novel phospholipase A2 from Macrovipera lebetina venom, exhibited anti-integrin activity. In this study, we show that MVL-PLA2 also displays potent anti-angiogenic properties. This phospholipase A2 inhibited adhesion and migration of human microvascular-endothelial cells (HMEC-1) in a dose-dependent manner without being cytotoxic. Using Matrigel and chick chorioallantoic membrane assays, we demonstrated that MVL-PLA2, as well as its catalytically inactivated form, significantly inhibited angiogenesis both in vitro and in vivo. We have also found that the actin cytoskeleton and the distribution of alphav beta3 integrin, a critical regulator of angiogenesis and a major component of focal adhesions, were disturbed after MVL-PLA2 treatment. In order to further investigate the mechanism of action of this protein on endothelial cells, we analyzed the dynamic instability behavior of microtubules in living endothelial cells. Interestingly, we showed that MVL-PLA2 significantly increased microtubule dynamicity in HMEC-1 cells by 40%. We propose that the enhancement of microtubule dynamics may explain the alterations in the formation of focal adhesions, leading to inhibition of cell adhesion and migration.


Subject(s)
Endothelial Cells/drug effects , Focal Adhesions/metabolism , Microtubules/metabolism , Neovascularization, Physiologic/drug effects , Phospholipases A2/pharmacology , Angiogenesis Inhibitors , Animals , Cell Adhesion/drug effects , Cell Movement/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Endothelial Cells/cytology , Endothelium, Vascular/cytology , Humans , Snake Venoms/pharmacology
7.
Matrix Biol ; 29(2): 117-26, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19808093

ABSTRACT

Leberagin-C, a new member of the disintegrin-like/cysteine-rich (D/C) family, was purified to homogeneity from the venom of Tunisian snake Macrovipera lebetina transmediterranea. It is a monomeric protein with a molecular mass of 25,787 Da. Its complete sequence of 205 amino acid residues was established by cDNA cloning. The leberagin-C shows many conserved sequences with other known D/C proteins, like the SECD binding sites and a pattern of 28 cysteines. It is the first purified protein from M. lebetina transmediterranea with only two disintegrin-like/cysteine-rich domains. Leberagin-C is able to inhibit platelet aggregation induced by thrombin and arachidonic acid with IC(50) of 40 and 50 nM respectively. It was also able to inhibit the adhesion of melanoma tumour cells on fibrinogen and fibronectin, by interfering with the function of alphavbeta3 and, to a lesser extent, with alphavbeta6 and alpha5beta1 integrins. To our knowledge, leberagin-C is the sole described D/C protein that does not specifically interact with the alpha2beta1 integrin. Structure-activity relationship study of leberagin-C suggested that there are some important amino acid differences with jararhagin, the most studied PIII metalloprotease from Bothrops jararaca, notably around the SECD motif in its disintegrin-like domain. Other regions implicated in leberagin-C specificities could not be excluded.


Subject(s)
Cell Adhesion/drug effects , Disintegrins/pharmacology , Integrin alphaVbeta3/metabolism , Platelet Aggregation Inhibitors/pharmacology , Viper Venoms/chemistry , Viperidae , Amino Acid Sequence , Animals , Antigens, Neoplasm/metabolism , Base Sequence , Cell Line, Tumor , Cysteine/metabolism , Disintegrins/chemistry , Disintegrins/genetics , Humans , Integrin alpha2beta1/metabolism , Integrin alpha5beta1/metabolism , Integrins/metabolism , Models, Molecular , Molecular Sequence Data , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/chemistry , Protein Structure, Tertiary , Sequence Alignment , Viper Venoms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...