Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
MethodsX ; 11: 102305, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37577164

ABSTRACT

We present the first published method to convert data obtained by the Pioneer Venus Large Probe Neutral Mass Spectrometer (LNMS) into units of mixing ratio (ppm) and volume percent (v%) against CO2 and N2, the dominant Venus atmospheric gases, including conversion to density (kg m-3). These unit conversions are key to unlocking the untapped potential of the data, which represents a significant challenge given the scant calibration data in the literature. Herein, we show that our data treatments and conversions yield mixing ratios and volume percent values for H2O, N2, and SO2 that are within error to those reported for the gas chromatograph (LGC) on the Pioneer Venus Large Probe (PVLP). For the noble gases, we developed strategies to correct for instrument biases by treating the data as a relative scale and using PVLP and Venera-based measurements as calibration points. Together, these methods, conversions, calibrations, and comparisons afford novel unit conversions for the LNMS data and yield unified measures for Venus' atmosphere from the LNMS and LGC on the PVLP.•Conversion into mixing ratio (ppm), volume percent (v%), and density (kg m-3).•Mixing ratios are expressed against CO2 and N2.•LNMS and LGC measurements on the PVLP are consistent.

2.
Nature ; 450(7170): 633-6, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18046394

ABSTRACT

Venus is completely covered by a thick cloud layer, of which the upper part is composed of sulphuric acid and some unknown aerosols. The cloud tops are in fast retrograde rotation (super-rotation), but the factors responsible for this super-rotation are unknown. Here we report observations of Venus with the Venus Monitoring Camera on board the Venus Express spacecraft. We investigate both global and small-scale properties of the clouds, their temporal and latitudinal variations, and derive wind velocities. The southern polar region is highly variable and can change dramatically on timescales as short as one day, perhaps arising from the injection of SO2 into the mesosphere. The convective cells in the vicinity of the subsolar point are much smaller than previously inferred, which we interpret as indicating that they are confined to the upper cloud layer, contrary to previous conclusions, but consistent with more recent study.

3.
Aust Fam Physician ; 21(11): 1582-4; 1588-91, 1992 Nov.
Article in English | MEDLINE | ID: mdl-1444995

ABSTRACT

Skin lesions often give important diagnostic clues to underlying systemic disorders. A brief overview is given of the types of cutaneous presentations that may be related to an underlying organic disease.


Subject(s)
Family Practice/methods , Skin Diseases/etiology , Diagnosis, Differential , Humans , Skin Diseases/diagnosis , Skin Diseases/pathology
4.
Science ; 253(5020): 648-51, 1991 Aug 09.
Article in English | MEDLINE | ID: mdl-17772369

ABSTRACT

Measurements of rotation rates and gravitational harmonics of Neptune made with the Voyager 2 spacecraft allow tighter constraints on models of the planet's interior. Shock measurements of material that may match the composition of Neptune, the so-calied planetary ;;ice,'' have been carried out to pressures exceeding 200 gigapascals (2 megabars). Comparison of shock data with inferred pressure-density profiles for both Uranus and Neptune shows substantial similarity through most of the mass of both planets. Analysis of the effect of Neptune's strong differential rotation on its gravitational harmonics indicates that differential rotation involves only the outermost few percent of Neptune's mass.

5.
Science ; 252(5012): 1536-9, 1991 Jun 14.
Article in English | MEDLINE | ID: mdl-17834879

ABSTRACT

Extensive dark smoke clouds associated with burning oil wells in Kuwait have been seen in data from weather satellites since early February 1991. The smoke is dispersed over a wide area. Variable and strong low level winds have held most of the smoke plume below 3 to 5 kilometers within a few hundred kilometers of the source. Thin veils of smoke have been detected in METEOSAT data as far away as 2000 kilometers east of Kuwait, over southwestern Pakistan at heights between 6 and 7 kilometers. The occasional presence of convective clouds over the fires indicates that some scavenging of the smoke is taking place.

6.
Science ; 251(4996): 929-32, 1991 Feb 22.
Article in English | MEDLINE | ID: mdl-17847386

ABSTRACT

Neptune receives only 1/900th of the earth's solar energy, but has wind speeds of nearly 600 meters per second. How the near-supersonic winds can be maintained has been a puzzle. A plausible mechanism, based on principles of angular momentum and energy conservation in conjunction with deep convection, leads to a regime of uniform angular momentum at low latitudes. In this model, the rapid retrograde winds observed are a manifestation of deep convection, and the high efficiency of the planet's heat engine is intrinsic from the room allowed at low latitudes for reversible processes, the high temperatures at which heat is added to the atmosphere, and the low temperatures at which heat is extracted.

7.
Science ; 245(4924): 1367-9, 1989 Sep 22.
Article in English | MEDLINE | ID: mdl-17798743

ABSTRACT

Images of Neptune obtained by the narrow-angle camera of the Voyager 2 spacecraft reveal large-scale cloud features that persist for several months or longer. The features' periods of rotation about the planetary axis range from 15.8 to 18.4 hours. The atmosphere equatorward of -53 degrees rotates with periods longer than the 16.05-hour period deduced from Voyager's planetary radio astronomy experiment (presumably the planet's internal rotation period). The wind speeds computed with respect to this radio period range from 20 meters per second eastward to 325 meters per second westward. Thus, the cloud-top wind speeds are roughly the same for all the planets ranging from Venus to Neptune, even though the solar energy inputs to the atmospheres vary by a factor of 1000.

8.
Science ; 205(4401): 74-6, 1979 Jul 06.
Article in English | MEDLINE | ID: mdl-17778907

ABSTRACT

Ultraviolet images of Venus over a 3-month period show marked evolution of the planetary scale features in the cloud patterns. The dark horizontal Y feature recurs quasi-periodically, at intervals of about 4 days, but it has also been absent for periods of several weeks. Bow-shaped features observed in Pioneer Venus images are farther upstream from the subsolar point than those in Mariner 10 images.

9.
Science ; 203(4382): 781-5, 1979 Feb 23.
Article in English | MEDLINE | ID: mdl-17832996

ABSTRACT

The first polarization measurements of the orbiter cloud photopolarimeter have detected a planet-wide layer of submicrometer aerosols of substantial visible optical thickness, of the order of 0.05 to 0.1, in the lower stratosphere well above the main visible sulfuric acid cloud layer. Early images show a number of features observed by Mariner 10 in 1974, including planetary scale markings that propagate around the planet in the retrograde sense at roughly 100 meters per second and bright- and dark-rimmed cells suggesting convective activity at low latitudes. The polar regions are covered by bright clouds down to latitudes aproximately 50 degrees, with both caps significantly brighter (relative to low latitudes) than the south polar cloud observed by Mariner 10. The cellular features, often organized into clusters with large horizontal scale, exist also at mid-latitudes, and include at least one case in which a cell cuts across the edge of the bright polar cloud of the northern hemisphere.

10.
Science ; 201(4360): 1009-11, 1978 Sep 15.
Article in English | MEDLINE | ID: mdl-17743631

ABSTRACT

A space-time composite of polar stereographic ultraviolet images of Venus from Mariner 10 shows a remarkable circumpolar vortex. The vortex is characterized by a cloud which appears similar to dense terrestrial stratus having an albedo that is 50 percent higher. Spiral streaks converge into it from low latitudes, akin to the spiral bands of a hurricane. The bright visible polar cloud is not axisymmetric but has roughly an elliptical shape. The high brightness of the polar cloud suggests that it has a different origin from the rest of the Venus cloud cover.

SELECTION OF CITATIONS
SEARCH DETAIL
...