Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20192, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980384

ABSTRACT

In Sub-Saharan Africa (SSA), effective brucellosis control is limited, in part, by the lack of long-term commitments by governments to control the disease and the absence of reliable national human and livestock population-based data to inform policies. Therefore, we conducted a study to establish the national prevalence and develop a risk map for Brucella spp. in cattle to contribute to plans to eliminate the disease in Kenya by the year 2040. We randomly generated 268 geolocations and distributed them across Kenya, proportionate to the area of each of the five agroecological zones and the associated cattle population. Cattle herds closest to each selected geolocation were identified for sampling. Up to 25 cattle were sampled per geolocation and a semi-structured questionnaire was administered to their owners. We tested 6,593 cattle samples for Brucella immunoglobulin G (IgG) antibodies using an Enzyme-linked immunosorbent assay (ELISA). We assessed potential risk factors and performed spatial analyses and prevalence mapping using approximate Bayesian inference implemented via the integrated nested Laplace approximation (INLA) method. The national Brucella spp. prevalence was 6.8% (95% CI: 6.2-7.4%). Exposure levels varied significantly between agro-ecological zones, with a high of 8.5% in the very arid zone with the lowest agricultural potential relative to a low of 0.0% in the agro-alpine zone with the highest agricultural potential. Additionally, seroprevalence increased with herd size, and the odds of seropositivity were significantly higher for females and adult animals than for males or calves. Similarly, animals with a history of abortion, or with multiple reproductive syndromes had higher seropositivity than those without. At the herd level, the risk of Brucella spp. transmission was higher in larger herds, and herds with a history of reproductive problems such as abortion, giving birth to weak calves, or having swollen testes. Geographic localities with high Brucella seroprevalence occurred in northern, eastern, and southern regions of Kenya all primarily characterized by semi-arid or arid agro-ecological zones dominated by livestock pastoralism interspersed with vast areas with mixed livestock-wildlife systems. The large spatial extent of our survey provides compelling evidence for the widespread geographical distribution of brucellosis risk across Kenya in a manner easily understandable for policymakers. Our findings can provide a basis for risk-stratified pilot studies aiming to investigate the cost-effectiveness and efficacy of singular and combined preventive intervention strategies that seek to inform Kenya's Brucellosis Control Policy.


Subject(s)
Brucella , Brucellosis , Animals , Cattle , Female , Male , Pregnancy , Animal Husbandry , Antibodies, Bacterial , Bayes Theorem , Brucellosis/epidemiology , Brucellosis/veterinary , Cross-Sectional Studies , Kenya/epidemiology , Livestock , Risk Factors , Seroepidemiologic Studies
2.
Parasit Vectors ; 7: 435, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25223760

ABSTRACT

BACKGROUND: Susceptibility of Ae. aegypti mosquito to dengue virus (DENV) varies geographically and can be influenced by climatic factors such as temperature, which affect the incidence, seasonality and distribution of vector-borne diseases. The first outbreak of dengue fever (DF) in Kenya occured in 1982 in the coastal towns of Malindi and Kilifi. Unlike Nairobi where no active dengue transmission has been reported, DF is currently re-emerging at the Coast causing major outbreaks. This study investigated the vector competence of Ae. aegypti populations from two urban areas, Kilifi (Coast of Kenya) and Nairobi (Central Kenya), for DEN-2 virus and the influence of temperature on the same. METHODS: Four-day old adult female Ae. aegypti mosquitoes collected as eggs from the two sites were exposed to defibrinated sheep blood mixed with DEN-2 virus (105.08 PFU/ml) using a membrane feeder. Half of the exposed mosquitoes were incubated at high temperature (30°C) and the other half at low temperature (26°C), and every 7 days up to day 21 post-infection 30% of the exposed mosquitoes were randomly picked, individually dissected, separated into abdomen and legs, and tested for midgut and disseminated infection, respectively, including virus quantification by plaque assay using Vero cells. RESULTS: Nairobi mosquito populations exhibited significantly higher midgut infection rates (16.8%) compared to the Kilifi population (9%; p = 0.0001). Midgut infection rates among the populations varied with temperature levels with a significantly higher infection rate observed for Nairobi at high (21.3%) compared to low temperature (12.0%; p = 0.0037). Similarly, for the Kilifi population, a significantly higher infection rate was recorded at high (11.6%) relative to low temperature (6.8%; p = 0.0162). It is however, noteworthy that disseminated infection was higher among the Kilifi mosquito population (40.7%) than in Nairobi mosquitoes (10.3%; p < 0.0001). CONCLUSION: The findings show a clear inherent difference between the two populations in their ability to develop disseminated infection with high temperature having an added effect of enhancing vector competence. Therefore, the inherent difference among the two populations of Ae. aegypti coupled with prevailing ambient temperature could partly explain the distribution of dengue 2 virus between the Coastal and Nairobi regions in Kenya.


Subject(s)
Aedes/virology , Dengue Virus/physiology , Animal Distribution , Animals , Female , Host-Pathogen Interactions , Kenya
3.
PLoS One ; 9(8): e105446, 2014.
Article in English | MEDLINE | ID: mdl-25153316

ABSTRACT

Biological phenotypes of tri-segmented arboviruses display characteristics that map to mutation/s in the S, M or L segments of the genome. Plaque variants have been characterized for other viruses displaying varied phenotypes including attenuation in growth and/or pathogenesis. In order to characterize variants of Bunyamwera and Ngari viruses, we isolated individual plaque size variants; small plaque (SP) and large plaque (LP) and determined in vitro growth properties and in vivo pathogenesis in suckling mice. We performed gene sequencing to identify mutations that may be responsible for the observed phenotype. The LP generally replicated faster than the SP and the difference in growth rate was more pronounced in Bunyamwera virus isolates. Ngari virus isolates were more conserved with few point mutations compared to Bunyamwera virus isolates which displayed mutations in all three genome segments but majority were silent mutations. Contrary to expectation, the SP of Bunyamwera virus killed suckling mice significantly earlier than the LP. The LP attenuation may probably be due to a non-synonymous substitution (T858I) that mapped within the active site of the L protein. In this study, we identify natural mutations whose exact role in growth and pathogenesis need to be determined through site directed mutagenesis studies.


Subject(s)
Bunyamwera virus/genetics , Genome, Viral , Animals , Bunyamwera virus/classification , Bunyamwera virus/isolation & purification , Genetic Variation , Humans , Kenya , Mice , Phenotype , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...