Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mar Life Sci Technol ; 5(1): 56-74, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37073330

ABSTRACT

The roles of dietary cholesterol in fish physiology are currently contradictory. The issue reflects the limited studies on the metabolic consequences of cholesterol intake in fish. The present study investigated the metabolic responses to high cholesterol intake in Nile tilapia (Oreochromis niloticus), which were fed with four cholesterol-contained diets (0.8, 1.6, 2.4 and 3.2%) and a control diet for eight weeks. All fish-fed cholesterol diets showed increased body weight, but accumulated cholesterol (the peak level was in the 1.6% cholesterol group). Then, we selected 1.6% cholesterol and control diets for further analysis. The high cholesterol diet impaired liver function and reduced mitochondria number in fish. Furthermore, high cholesterol intake triggered protective adaptation via (1) inhibiting endogenous cholesterol synthesis, (2) elevating the expression of genes related to cholesterol esterification and efflux, and (3) promoting chenodeoxycholic acid synthesis and efflux. Accordingly, high cholesterol intake reshaped the fish gut microbiome by increasing the abundance of Lactobacillus spp. and Mycobacterium spp., both of which are involved in cholesterol and/or bile acids catabolism. Moreover, high cholesterol intake inhibited lipid catabolic activities through mitochondrial ß-oxidation, and lysosome-mediated lipophagy, and depressed insulin signaling sensitivity. Protein catabolism was elevated as a compulsory response to maintain energy homeostasis. Therefore, although high cholesterol intake promoted growth, it led to metabolic disorders in fish. For the first time, this study provides evidence for the systemic metabolic response to high cholesterol intake in fish. This knowledge contributes to an understanding of the metabolic syndromes caused by high cholesterol intake or deposition in fish. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00158-7.

2.
Article in English | MEDLINE | ID: mdl-36708962

ABSTRACT

Vitellogenins (Vtgs) are essential for female reproduction in oviparous animals, yet the exact roles and mechanisms remain unknown. In the present study, we knocked out vtg1, which is the most abundant Vtg in zebrafish, Danio rerio via the CRISPR/Cas 9 technology. We aimed to identify the roles of Vtg1 and related mechanisms in reproduction and development. We found that, the Vtg1-deficient female zebrafish reduced gonadosomatic index, egg production, yolk granules and mature follicles in ovary compared to the wide type (WT). Moreover, the Vtg1-deficient zebrafish diminished hatching rates, cumulative survival rate, swimming capacity and food intake, but increased malformation rate, and delayed swim bladder development during embryo and early-larval phases. The Vtg1-deficiency in female broodstock inhibited docosahexaenoic acid-enriched phosphatidylcholine (DHA-PC) transportation from liver to ovary, which lowered DHA-PC content in ovary and offspring during larval stage. However, the Vtg1-deficient zebrafish increased gradually the total DHA-PC content via exogeneous food intake, and the differences in swimming capacity and food intake returned to normal as they matured. Furthermore, supplementing Vtg1-deficient zebrafish with dietary PC and DHA partly ameliorated the impaired female reproductive capacity and larval development during early phases. This study indicates that, DHA and PC carried by Vtg1 are crucial for female fecundity, and affect embryo and larval development through maternal-nutrition effects. This is the first study elucidating the nutrient and physiological functions of Vtg1 and the underlying biochemical mechanisms in fish reproduction and development.


Subject(s)
Ovary , Zebrafish , Animals , Female , Vitellogenins/pharmacology , Docosahexaenoic Acids/pharmacology , Liver , Reproduction/physiology , Lecithins
3.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R281-R292, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36572553

ABSTRACT

The regulation of cholesterol metabolism in fish is still unclear. Statins play important roles in promoting cholesterol metabolism development in mammals. However, studies on the role of statins in cholesterol metabolism in fish are currently limited. The present study evaluated the effects of statins on cholesterol metabolism in fish. Nile tilapia (Oreochromis niloticus) were fed on control diets supplemented with three atorvastatin levels (0, 12, and 24 mg/kg diet, ATV0, ATV12, and ATV24, respectively) for 4 wk. Intriguingly, the results showed that both atorvastatin treatments increased hepatic cholesterol and triglyceride contents mainly through inhibiting bile acid synthesis and efflux, and compensatorily enhancing cholesterol synthesis in fish liver (P < 0.05). Moreover, atorvastatin treatment significantly inhibited hepatic very-low-density lipoprotein (VLDL) assembly and thus decreased serum VLDL content (P < 0.05). However, fish treated with atorvastatin significantly reduced cholesterol and triglycerides contents in adipose tissue (P < 0.05). Further molecular analysis showed that atorvastatin treatment promoted cholesterol synthesis and lipogenesis pathways, but inhibited lipid catabolism and low-density lipoprotein (LDL) uptake in the adipose tissue of fish (P < 0.05). In general, atorvastatin induced the remodeling of lipid distribution between liver and adipose tissues through blocking VLDL efflux from the liver to adipose tissue of fish. Our results provide a novel regulatory pattern of cholesterol metabolism response caused by atorvastatin in fish, which is distinct from mammals: cholesterol inhibition by atorvastatin activates hepatic cholesterol synthesis and inhibits its efflux to maintain cholesterol homeostasis, consequently reduces cholesterol storage in fish adipose tissue.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Animals , Atorvastatin/pharmacology , Atorvastatin/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Lipoproteins/metabolism , Lipoproteins/pharmacology , Cholesterol , Liver/metabolism , Triglycerides , Lipoproteins, VLDL , Adipose Tissue/metabolism , Lipid Metabolism , Mammals/metabolism
4.
Anim Nutr ; 11: 25-37, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36016966

ABSTRACT

Pyruvate dehydrogenase kinases (PDKs)-pyruvate dehydrogenase E1α subunit (PDHE1α) axis plays an important role in regulating glucose metabolism in mammals. However, the regulatory function of PDKs-PDHE1α axis in the glucose metabolism of fish is not well known. This study determined whether PDKs inhibition could enhance PDHE1α activity, and improve glucose catabolism in fish. Nile tilapia fingerlings (1.90 ± 0.11 g) were randomly divided into 4 treatments in triplicate (30 fish each) and fed control diet without dichloroacetate (DCA) (38% protein, 7% lipid and 45% corn starch) and the control diet supplemented with DCA, which inhibits PDKs through binding the allosteric sites, at 3.75 (DCA3.75), 7.50 (DCA7.50) and 11.25 g/kg (DCA11.25), for 6 wk. The results showed that DCA3.75, DCA7.50 and DCA11.25 significantly increased weight gain, carcass ratio and protein efficiency ratio (P < 0.05) and reduced feed efficiency (P < 0.05) of Nile tilapia. To investigate the effects of DCA on growth performance of Nile tilapia, we selected the lowest dose DCA3.75 for subsequent analysis. Nile tilapia fed on DCA3.75 significantly reduced the mesenteric fat index, serum and liver triglyceride concentration and total lipid content in whole fish, and down-regulated the expressions of genes related to lipogenesis (P < 0.05) compared to the control. The DCA3.75 treatment significantly improved glucose oxidative catabolism and glycogen synthesis in the liver, but significantly reduced the conversion of glucose to lipid (P < 0.05). Furthermore, the DCA3.75 treatment significantly decreased the PDK2/4 gene and protein expressions (P < 0.05), accordingly stimulated PDHE1α activity by decreasing the phosphorylated PDHE1α protein level. In addition, DCA3.75 treatment significantly increased the phosphorylated levels of key proteins involved in insulin signaling pathway and glycogen synthase kinase 3ß (P < 0.05). Taken together, the present study demonstrates that PDK2/4 inhibition by using DCA promotes glucose utilization in Nile tilapia by activating PDHE1α and improving insulin sensitivity. Our study helps to understand the regulatory mechanism of glucose metabolism for improving dietary carbohydrate utilization in farmed fish.

5.
Food Chem ; 382: 132367, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35152027

ABSTRACT

The wide use of high-fat diet (HFD) causes negative effects on flesh quality in farmed fish. l-carnitine, a lipid-lowering additive, enhances mitochondrial fatty acid ß-oxidation. However its roles in alleviating the effects of HFD on flesh quality in fish are unknown. We fed Nile tilapia with medium-fat diet (MFD, 6% dietary lipid), high-fat diet (HFD, 12% dietary lipid) and HFCD supplemented with l-carnitine (HFCD + 400 mg/kg l-carnitine) for 10 weeks. The HFD-fed fish had higher fat deposition, pH value, myofiber density and flesh hardness than those fed on MFD. However, feeding the fish with the HFCD improved lipid catabolism, which increased significantly lactic acid content and myofiber diameter in muscle, thus reduced pH and hardness values. HFCD also reduced endoplasmic reticulum stress and myofiber apoptosis caused by HFD in the fish. Our study suggests that dietary l-carnitine supplementation alleviates the negative effects of HFD on flesh quality of farmed fish.


Subject(s)
Cichlids , Animal Feed/analysis , Animals , Carnitine/metabolism , Cichlids/metabolism , Diet , Diet, High-Fat/adverse effects , Dietary Supplements , Hardness , Hydrogen-Ion Concentration
6.
Fish Physiol Biochem ; 47(1): 173-188, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33245450

ABSTRACT

The adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL)-mediated lipolysis play important roles in lipid catabolism. ATGL is considered the central rate-limiting enzyme in the mobilization of fatty acids in mammals. Currently, severe fat accumulation has been commonly detected in farmed fish globally. However, the ATGL-mediated lipolysis and the potential synergy among ATGL, HSL, and autophagy, which is another way for lipid breakdown, have not been intensively understood in fish. In the present study, we added Atglistatin as an ATGL-specific inhibitor into the zebrafish diet and fed to the fish for 5 weeks. The results showed that the Atglistatin-treated fish exhibited severe fat deposition, reduced oxygen consumption, and fatty acid ß-oxidation, accompanied with increased oxidative stress and inflammation. Furthermore, the Atglistatin-treated fish elevated total and phosphorylation protein expressions of HSL. However, the free fatty acids and lipase activities in organs were still systemically reduced in the Atglistatin-treated fish, and the autophagy marker LC3 was also decreased in the liver. On the other hand, glycogenolysis was stimulated but blood glucose was higher in the Atglistatin-treated fish. The transcriptomic analysis also provided the hint that the protein turnover efficiency in Atglistatin-treated fish was likely to be accelerated, but the protein content in whole fish was not affected. Taken together, ATGL plays crucial roles in energy homeostasis such that its inhibition causes loss of lipid-sourced energy production, which cannot be compensated by activation of HSL, autophagy, and utilization of other nutrients.


Subject(s)
Energy Metabolism/drug effects , Fish Proteins/antagonists & inhibitors , Lipase/antagonists & inhibitors , Lipid Metabolism/drug effects , Phenylurea Compounds/pharmacology , Animals , Autophagy/drug effects , Fish Proteins/genetics , Fish Proteins/metabolism , Lipase/genetics , Lipase/metabolism , Liver/drug effects , Liver/metabolism , Male , Nutrients/metabolism , Transcriptome , Zebrafish/genetics , Zebrafish/metabolism
7.
Sci Total Environ ; 680: 169-180, 2019 Aug 25.
Article in English | MEDLINE | ID: mdl-31103895

ABSTRACT

Antibiotics and high fat diets are commonly used independently in global aquaculture production for fish health management and to spare the use of costly protein as energy sources, respectively, causing relatively similar metabolic effects and stresses. However, it is unknown whether dietary high fat worsens or attenuates the adverse effects caused by antibiotics in fish. We determined the ability of high fat diet to influence the adverse effects of oxytetracycline on Nile tilapia, Oreochromis niloticus. Thirty Nile tilapia weighing 8.45 ±â€¯0.15 g were fed on medium fat (MF; 70 g/kg) and high fat (HF; 120 g/kg) diets and the same fat levels supplemented with 2.00 g/kg diet of OTC (80 mg/kg body weight/day) hereafter, MFO and HFO for 65 days. The general growth performance, feed efficiency and intestinal health of fish were evaluated. The Nile tilapia fed on HFO diet had significantly lower growth rate, body protein content and feed efficiency compared to those fed on MFO diet. Dietary HFO affected the intestine histomorphology, which decreased dramatically the tight junction proteins of Nile tilapia and induced microbiota dysbiosis compared to MFO diet. The Nile tilapia fed on HFO diet had increased oxidative stress, which stimulated drug detoxification response, caused endoplasmic reticulum stress and apoptosis compared to those fed on MFO diet. The new findings from our study demonstrate that, the adverse effects of antibiotics in fish are different at medium and high fat contents. Feeding fish with high fat diets with antibiotics worsen the adverse effects. This enlightens our understanding on the risks of antibiotics misuse and also suggests that antibiotics should be more strictly limited in aquaculture, in which high fat diets are currently widely used in fish production worldwide.


Subject(s)
Anti-Bacterial Agents/adverse effects , Cichlids/physiology , Dietary Exposure , Intestines/drug effects , Water Pollutants, Chemical/adverse effects , Animals , Aquaculture , Diet, High-Fat , Dietary Supplements
8.
Br J Nutr ; 122(6): 625-638, 2019 09 28.
Article in English | MEDLINE | ID: mdl-32124711

ABSTRACT

l-Carnitine is essential for mitochondrial ß-oxidation and has been used as a lipid-lowering feed additive in humans and farmed animals. d-Carnitine is an optical isomer of l-carnitine and dl-carnitine has been widely used in animal feeds. However, the functional differences between l- and d-carnitine are difficult to study because of the endogenous l-carnitine background. In the present study, we developed a low-carnitine Nile tilapia model by treating fish with a carnitine synthesis inhibitor, and used this model to investigate the functional differences between l- and d-carnitine in nutrient metabolism in fish. l- or d-carnitine (0·4 g/kg diet) was fed to the low-carnitine tilapia for 6 weeks. l-Carnitine feeding increased the acyl-carnitine concentration from 3522 to 10 822 ng/g and alleviated the lipid deposition from 15·89 to 11·97 % in the liver of low-carnitine tilapia. However, as compared with l-carnitine group, d-carnitine feeding reduced the acyl-carnitine concentration from 10 822 to 5482 ng/g, and increased lipid deposition from 11·97 to 20·21 % and the mRNA expression of the genes involved in ß-oxidation and detoxification in the liver. d-Carnitine feeding also induced hepatic inflammation, oxidative stress and apoptosis. A metabolomic investigation further showed that d-carnitine feeding increased glycolysis, protein metabolism and activity of the tricarboxylic acid cycle and oxidative phosphorylation. Thus, l-carnitine can be physiologically utilised in fish, whereas d-carnitine is metabolised as a xenobiotic and induces lipotoxicity. d-Carnitine-fed fish demonstrates increases in peroxisomal ß-oxidation, glycolysis and amino acid degradation to maintain energy homeostasis. Therefore, d-carnitine is not recommended for use in farmed animals.


Subject(s)
Carnitine/pharmacology , Tilapia/metabolism , Animal Feed , Animals , Apoptosis , Carnitine/administration & dosage , Carnitine/chemistry , Glucose/metabolism , Liver/metabolism , Metabolomics , Models, Animal , Oxidation-Reduction , Oxidative Stress , Proteins/metabolism , RNA, Messenger/genetics , Stereoisomerism
9.
Int J Vet Sci Med ; 6(1): 31-38, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30255075

ABSTRACT

Growing mixed-sex Nile tilapia, Oreochromis niloticus in earthen ponds to table size is a major challenge due to its early maturity and prolific breeding. This study determined the effects of two medicinal plants; Aspilia plant, Aspilia mossambicensis and Neem tree, Azadirachta indica on hatchlings production, growth performance, feed utilization, survival and haematology of O. niloticus. Experimental diets were prepared by adding 1.0, 2.0, 4.0 and 8.0 g of either A. mossambicensis or A. indica leaf powders into a kg of the control diet subsequently administered daily to twenty triplicates of O. niloticus for three months. Both A. mossambicensis and A. indica leaf powder at the used doses, reduced significantly hatchlings production of O. niloticus when compared to the control (P < .05). The lowest value of hatchlings count was found in A. indica dose 8.0 g kg-1 (P < .05). The use of A. mossambicensis leaf powder at a dose of 4.0 g kg-1 improved significantly growth performance and feed utilization (P < .05). In contrast, survival rate was not affected significantly by the two plants (P > .05). Both plants differentially increased significantly haematological parameters such as Hb concentration, packed cell volume (PCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), white blood cells (WBC), monocyte and lymphocytes while reduced significantly neutrophils and eosinophils (P < .05). In conclusion, A. mossambicensis and A. indica leaf powders control prolific breeding of O. niloticus, modulate its growth performance and feed utilization. The two plants also modulate haematological parameters of O. niloticus indicating immunological response towards stress or intoxication, however, the values obtained were not beyond the recommended range for healthy fish.

10.
Front Physiol ; 9: 509, 2018.
Article in English | MEDLINE | ID: mdl-29867554

ABSTRACT

Impaired mitochondrial fatty acid ß-oxidation has been correlated with many metabolic syndromes, and the metabolic characteristics of the mammalian models of mitochondrial dysfunction have also been intensively studied. However, the effects of the impaired mitochondrial fatty acid ß-oxidation on systemic metabolism in teleost have never been investigated. In the present study, we established a low-carnitine zebrafish model by feeding fish with mildronate as a specific carnitine synthesis inhibitor [0.05% body weight (BW)/d] for 7 weeks, and the systemically changed nutrient metabolism, including carnitine and triglyceride (TG) concentrations, fatty acid (FA) ß-oxidation capability, and other molecular and biochemical assays of lipid, glucose, and protein metabolism, were measured. The results indicated that mildronate markedly decreased hepatic carnitine concentrations while it had no effect in muscle. Liver TG concentrations increased by more than 50% in mildronate-treated fish. Mildronate decreased the efficiency of liver mitochondrial ß-oxidation, increased the hepatic mRNA expression of genes related to FA ß-oxidation and lipolysis, and decreased the expression of lipogenesis genes. Mildronate decreased whole body glycogen content, increased glucose metabolism rate, and upregulated the expression of glucose uptake and glycolysis genes. Mildronate also increased whole body protein content and hepatic mRNA expression of mechanistic target of rapamycin (mtor), and decreased the expression of a protein catabolism-related gene. Liver, rather than muscle, was the primary organ targeted by mildronate. In short, mildronate-induced hepatic inhibited carnitine synthesis in zebrafish caused decreased mitochondrial FA ß-oxidation efficiency, greater lipid accumulation, and altered glucose and protein metabolism. This reveals the key roles of mitochondrial fatty acid ß-oxidation in nutrient metabolism in fish, and this low-carnitine zebrafish model could also be used as a novel fish model for future metabolism studies.

11.
Front Microbiol ; 9: 1124, 2018.
Article in English | MEDLINE | ID: mdl-29896183

ABSTRACT

Understanding how intestinal microbiota alters energy homeostasis and lipid metabolism is a critical process in energy balance and health. However, the exact role of intestinal microbiota in the regulation of lipid metabolism in fish remains unclear. Here, we used two zebrafish models (germ-free and antibiotics-treated zebrafish) to identify the role of intestinal microbiota in lipid metabolism. Conventional and germ-free zebrafish larvae were fed with egg yolk. Transmission electron microscopy was used to detect the presence of lipid droplets in the intestinal epithelium. The results showed that, microbiota increased lipid accumulation in the intestinal epithelium. The mRNA sequencing technology was used to assess genes expression level. We found majority of the differentially expressed genes were related to lipid metabolism. Due to the limitation of germ-free zebrafish larvae, antibiotics-treated zebrafish were also used to identify the relationship between the gut microbiota and the host lipid metabolism. Oil-red staining showed antibiotics-treated zebrafish had less intestinal lipid accumulation than control group. The mRNA expression of genes related to lipid metabolism in liver and intestine was also quantified by using real-time PCR. The results indicated that apoa4, hsl, cox15, slc2a1a, and lss were more related to intestinal bacteria in fish, while the influence of intestinal microbiota on the activity of fabp6, acsl5, cd36, and gpat2 was different between the liver and intestine. This study identified several genes regulated by intestinal microbiota. Furthermore, the advantages and disadvantages of each model have been discussed. This study provides valuable information for exploring host-microbiota interactions in zebrafish in future.

12.
Environ Int ; 115: 205-219, 2018 06.
Article in English | MEDLINE | ID: mdl-29604537

ABSTRACT

BACKGROUND: Antibiotics used globally to treat human and animal diseases exist ubiquitously in the environment at low doses because of misuse, overdose and poor absorption after ingestion, coupled with their high-water solubility and degradation resistance. However, the systemic chronic effects of exposure to low environmental concentrations of antibiotics (LECAs) and legal aquaculture doses of antibiotics (LADAs) in fish and their human health risk are currently unknown. OBJECTIVE: To investigate the in vivo chronic effects of exposure to LECAs and LADAs using oxytetracycline (OTC) and sulfamethoxazole (SMZ) in Nile tilapia (Oreochromis niloticus) and their human health risk. METHODS: Twenty O. niloticus weighing 27.73 ±â€¯0.81 g were exposed to water containing LECAs (OTC at 420 ng/L and SMZ at 260 ng/L) and diets supplemented with LADAs (OTC 80 mg/kg/day and SMZ 100 mg/kg/day) for twelve weeks. General physiological functions, metabolic activities, intestinal and hepatic health were systemically evaluated. The possible human health risks of the consumption of the experimental Nile tilapia fillets in adults and children were assessed by using risk quotient. RESULTS: After exposure, we observed retarded growth performance accompanied by reduced nutrients digestibility, feed efficiency, organ indices, and lipid body composition in treated fish. Antibiotics distorted intestinal morphological features subsequently induced microbiota dysbiosis and suppressed intestinal tight junction proteins. Exposure of fish to LECAs and LADAs induced oxidative stress, suppressed innate immunity, stimulated inflammatory and detoxification responses, concomitantly inhibited antioxidant capacity and caused lipid peroxidation in intestine and liver organs. Both LECAs and LADAs enhanced gluconeogenesis, inhibited lipogenesis and fatty acid beta oxidation in intestine and liver organs. The exposure of fish to LECAs and LADAs induced anaerobic glycolytic pathway and affected intestinal fat catabolism in intestine while halted aerobic glycolysis, increased hepatic fat catabolism, and induced DNA damage in liver. The hazard risk quotient in children for fish treated with OTCD was >1 indicating human health risk. CONCLUSION: Overall, both LECAs and LADAs impair general physiological functions, nutritional metabolism, and compromise fish immune system. Consumption of fish fed with legal OTC provokes health risk in children. Global stringent prohibition policy for use of antibiotics in aquaculture production and strategies to limit their release into the environment are urgently required to protect human health.


Subject(s)
Anti-Bacterial Agents/toxicity , DNA Damage/drug effects , Environmental Exposure/analysis , Liver/drug effects , Risk Assessment/methods , Animals , Aquaculture , Cichlids , Environmental Health , Humans , Toxicity Tests, Chronic
13.
J Lipids ; 2014: 712134, 2014.
Article in English | MEDLINE | ID: mdl-25610654

ABSTRACT

Fatty acids (FAs) particularly ω3 and ω6 polyunsaturated fatty acids (PUFAs) play important role in human health. This study aimed to investigate the composition and levels of selected ω3 PUFAs in four commercial fish species, Nile perch (Lates niloticus), Nile tilapia (Oreochromis niloticus), Tilapia zillii, and dagaa (Rastrineobola argentea) from Mwanza Gulf in Lake Victoria. The results indicated that 36 types of FAs with different saturation levels were detected. These FAs were dominated by docosahexaenoic (DHA), eicosapentaenoic (EPA), docosapentaenoic (DPA), and eicosatetraenoic acids. O. niloticus had the highest composition of FAs (34) compared to L. niloticus (27), T. zillii (26), and R. argentea (21). The levels of EPA differed significantly among the four commercial fish species (F = 6.19, P = 0.001). The highest EPA levels were found in R. argentea followed by L. niloticus and O. niloticus and the lowest in T. zillii. The DPA levels showed no significant difference among the four fish species studied (F = 0.652, P = 0.583). The study concluded that all four commercial species collected from Mwanza Gulf are good for human health, but R. argentea is the best for consumption because it contains higher levels of ω3 FAs, mainly EPA.

SELECTION OF CITATIONS
SEARCH DETAIL
...