Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(43): eadh3273, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37889977

ABSTRACT

Mechanical stimuli, such as stroking or pressing on the skin, activate mechanoreceptors transmitting information to the sensory nervous system and brain. It is well accepted that deflection of the hair fiber that occurs with a light breeze or touch directly activates the sensory neurons surrounding the hair follicle, facilitating transmission of mechanical information. Here, we hypothesized that hair follicle outer root sheath cells act as transducers of mechanical stimuli to sensory neurons surrounding the hair follicle. Using electrochemical analysis on human hair follicle preparations in vitro, we were able to show that outer root sheath cells release ATP and the neurotransmitters serotonin and histamine in response to mechanical stimulation. Using calcium imaging combined with pharmacology in a coculture of outer root sheath cells with sensory neurons, we found that the release of these three molecules from hair follicle cells leads to activation of sensory neurons.


Subject(s)
Hair Follicle , Hair , Humans , Skin , Sensory Receptor Cells
2.
Exp Dermatol ; 32(7): 1174-1181, 2023 07.
Article in English | MEDLINE | ID: mdl-37237288

ABSTRACT

Male pattern hair loss (MPHL), also referred to as male androgenetic alopecia (AGA) is the most common type of non-scarring progressive hair loss, with 80% of men suffering from this condition in their lifetime. In MPHL, the hair line recedes to a specific part of the scalp which cannot be accurately predicted. Hair is lost from the front, vertex, and the crown, yet temporal and occipital follicles remain. The visual effect of hair loss is due to hair follicle miniaturisation, where terminal hair follicles become dimensionally smaller. Miniaturisation is also characterised by a shortening of the growth phase of the hair cycle (anagen), and a prolongation of the dormant phase (kenogen). Together, these changes result in the production of thinner and shorter hair fibres, referred to as miniaturised or vellus hairs. It remains unclear why miniaturisation occurs in this specific pattern, with frontal follicles being susceptible while occipital follicles remain in a terminal state. One main factor we believe to be at play, which will be discussed in this viewpoint, is the developmental origin of the skin and hair follicle dermis on different regions of the scalp.


Subject(s)
Alopecia , Hair , Male , Humans , Alopecia/etiology , Hair Follicle , Scalp , Skin
3.
NPJ Regen Med ; 8(1): 1, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36609660

ABSTRACT

Despite the substantial impact of skin scarring on patients and the healthcare system, there is a lack of strategies to prevent scar formation, let alone methods to remodel mature scars. Here, we took a unique approach inspired by how healthy hairbearing skin undergoes physiological remodelling during the regular cycling of hair follicles. In this pilot clinical study, we tested if hair follicles transplanted into human scars can facilitate tissue regeneration and actively remodel fibrotic tissue, similar to how they remodel the healthy skin. We collected full-thickness skin biopsies and compared the morphology and transcriptional signature of fibrotic tissue before and after transplantation. We found that hair follicle tranplantation induced an increase in the epidermal thickness, interdigitation of the epidermal-dermal junction, dermal cell density, and blood vessel density. Remodelling of collagen type I fibres reduced the total collagen fraction, the proportion of thick fibres, and their alignment. Consistent with these morphological changes, we found a shift in the cytokine milieu of scars with a long-lasting inhibition of pro-fibrotic factors TGFß1, IL13, and IL-6. Our results show that anagen hair follicles can attenuate the fibrotic phenotype, providing new insights for developing regenerative approaches to remodel mature scars.

4.
Methods Mol Biol ; 2154: 91-103, 2020.
Article in English | MEDLINE | ID: mdl-32314210

ABSTRACT

The dermal papilla (DP) is a cluster of mesenchymal cells located at the bottom of the hair follicle. Cells within the DP interact with numerous other cell types within the follicle, including epithelial stem cells, matrix cells, and melanocytes, regulating their function. The diameter of the DP is directly proportional to the width of the hair shaft, and a decrease in both cell number and DP size is observed in hair loss conditions such as androgenetic alopecia. Conversely, microdissected ex vivo DP can instruct growth of de novo hair follicles. The study of DP cells and their role in human hair growth is often hampered by the technical challenge of DP isolation and culture. Here we describe a method used within our research group for isolating DP from human hair follicles.


Subject(s)
Cell Separation/methods , Dermis/cytology , Hair Follicle/cytology , Microdissection , Biomarkers , Cell Culture Techniques , Cells, Cultured , Dermis/metabolism , Fluorescent Antibody Technique , Hair Follicle/metabolism , Humans , Immunohistochemistry , Microdissection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...