Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 471: 134270, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640676

ABSTRACT

Alachlor, a widely used chloroacetanilide herbicide for controlling annual grasses in crops, has been reported to rapidly trigger protein denaturation and aggregation in the eukaryotic model organism Saccharomyces cerevisiae. Therefore, this study aimed to uncover cellular mechanisms involved in preventing alachlor-induced proteotoxicity. The findings reveal that the ubiquitin-proteasome system (UPS) plays a crucial role in eliminating alachlor-denatured proteins by tagging them with polyubiquitin for subsequent proteasomal degradation. Exposure to alachlor rapidly induced an inhibition of proteasome activity by 90 % within 30 min. The molecular docking analysis suggests that this inhibition likely results from the binding of alachlor to ß subunits within the catalytic core of the proteasome. Notably, our data suggest that nascent proteins in the endoplasmic reticulum (ER) are the primary targets of alachlor. Consequently, the unfolded protein response (UPR), responsible for coping with aberrant proteins in the ER, becomes activated within 1 h of alachlor treatment, leading to the splicing of HAC1 mRNA into the active transcription activator Hac1p and the upregulation of UPR gene expression. These findings underscore the critical roles of the protein quality control systems UPS and UPR in mitigating alachlor-induced proteotoxicity by degrading alachlor-denatured proteins and enhancing the protein folding capacity of the ER.


Subject(s)
Acetamides , Endoplasmic Reticulum , Herbicides , Proteasome Endopeptidase Complex , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Unfolded Protein Response , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Acetamides/pharmacology , Acetamides/toxicity , Herbicides/toxicity , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Unfolded Protein Response/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/drug effects , Cytosol/metabolism , Cytosol/drug effects , Molecular Docking Simulation , Proteotoxic Stress
2.
Environ Microbiol ; 24(2): 707-720, 2022 02.
Article in English | MEDLINE | ID: mdl-34927334

ABSTRACT

Cadmium is a highly toxic heavy metal that causes many harmful effects on human health and ecosystems. Metal chelation-based techniques have become a common approach for the treatment of metal poisoning and also for the remediation of metal contamination. Phosphate, an essential nutrient required for key cellular functions, has been supposed to be effective in reducing cadmium bioavailability, possibly through its chelating potential. In this study, we explored the effects of phosphate on cadmium toxicity and cellular response to cadmium stress in the eukaryotic model Saccharomyces cerevisiae. Our results reveal that cadmium toxicity is unexpectedly enhanced during phosphate repletion and optimal phosphate levels for yeast growth under cadmium stress conditions decline with increasing cadmium concentrations. The profound cadmium toxicity during phosphate repletion is unlikely to result from either elevated cadmium accumulation or dysregulated homeostasis of essential metals, but rather due to increased production of intracellular reactive oxygen species. We show that, under phosphate-depleted conditions, the activities of antioxidant enzymes, especially Mn-superoxide dismutase and catalase, are significantly promoted through transcriptional upregulation. Our findings highlight the important role of cellular response to phosphate limitation in mitigating cadmium toxicity and endogenous oxidative stress through the enhancement of antioxidant enzyme activity.


Subject(s)
Antioxidants , Cadmium , Antioxidants/metabolism , Cadmium/toxicity , Catalase/metabolism , Ecosystem , Humans , Oxidative Stress/physiology , Phosphates/pharmacology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Superoxide Dismutase/metabolism
3.
Environ Microbiol ; 22(6): 2403-2418, 2020 06.
Article in English | MEDLINE | ID: mdl-32291875

ABSTRACT

In Saccharomyces cerevisiae, vacuolar H+ -ATPase (V-ATPase) involved in the regulation of intracellular pH homeostasis has been shown to be important for tolerances to cadmium, cobalt and nickel. However, the molecular mechanism underlying the protective role of V-ATPase against these metals remains unclear. In this study, we show that cadmium, cobalt and nickel disturbed intracellular pH balance by triggering cytosolic acidification and vacuolar alkalinization, likely via their membrane permeabilizing effects. Since V-ATPase plays a crucial role in pumping excessive cytosolic protons into the vacuole, the metal-sensitive phenotypes of the Δvma2 and Δvma3 mutants lacking V-ATPase activity were supposed to result from highly acidified cytosol. However, we found that the metal-sensitive phenotypes of these mutants were caused by increased production of reactive oxygen species, likely as a result of decreased expression and activities of manganese superoxide dismutase and catalase. In addition, the loss of V-ATPase function led to aberrant vacuolar morphology and defective endocytic trafficking. Furthermore, the sensitivities of the Δvma mutants to other chemical compounds (i.e. acetic acid, H2 O2 , menadione, tunicamycin and cycloheximide) were a consequence of increased endogenous oxidative stress. These findings, therefore, suggest the important role of V-ATPase in preventing endogenous oxidative stress induced by metals and other chemical compounds.


Subject(s)
Cadmium/toxicity , Cobalt/toxicity , Nickel/toxicity , Oxidative Stress/drug effects , Saccharomyces cerevisiae Proteins/genetics , Vacuolar Proton-Translocating ATPases/genetics , Catalase/metabolism , Mutation , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Superoxide Dismutase/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
4.
Sci Rep ; 8(1): 13069, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30166576

ABSTRACT

During fermentation, yeast cells encounter a number of stresses, including hyperosmolarity, high ethanol concentration, and high temperature. Previous deletome analysis in the yeast Saccharomyces cerevisiae has revealed that SOD1 gene encoding cytosolic Cu/Zn-superoxide dismutase (SOD), a major antioxidant enzyme, was required for tolerances to not only oxidative stress but also other stresses present during fermentation such as osmotic, ethanol, and heat stresses. It is therefore possible that these fermentation-associated stresses may also induce endogenous oxidative stress. In this study, we show that osmotic, ethanol, and heat stresses promoted generation of intracellular reactive oxygen species (ROS) such as superoxide anion in the cytosol through a mitochondria-independent mechanism. Consistent with this finding, cytosolic Cu/Zn-SOD, but not mitochondrial Mn-SOD, was required for protection against oxidative stress induced by these fermentation-associated stresses. Furthermore, supplementation of ROS scavengers such as N-acetyl-L-cysteine (NAC) alleviated oxidative stress induced during very high gravity (VHG) fermentation and enhanced fermentation performance at both normal and high temperatures. In addition, NAC also plays an important role in maintaining the Cu/Zn-SOD activity during VHG fermentation. These findings suggest the potential role of ROS scavengers for application in industrial-scale VHG ethanol fermentation.


Subject(s)
Ethanol/metabolism , Fermentation , Hypergravity , Oxidative Stress , Saccharomyces cerevisiae/metabolism , Cytosol/metabolism , Free Radical Scavengers/metabolism , Inhibitory Concentration 50 , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/growth & development , Stress, Physiological , Superoxide Dismutase-1/metabolism
5.
Ecotoxicol Environ Saf ; 122: 322-30, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26300116

ABSTRACT

The three bacteria, Tsukamurella paurometabola A155, Pseudomonas aeruginosa B237, and Cupriavidus taiwanensis E324, were isolated from soils collected from a zinc mine in Tak Province, Thailand. Among these bacteria, P. aeruginosa B237 and C. taiwanensis E324 were tolerant of both cadmium and zinc, while T. paurometabola A155 was highly tolerant of zinc only. Bioaccumulation experiment revealed that Cd(2+) and Zn(2+) were mainly adsorbed on the cell walls of these bacteria rather than accumulated inside the cells. During Cd(2+) and Zn(2+) biosorption, P. aeruginosa B237 and T. paurometabola A155 showed the highest removal efficiencies for Cd(2+) and Zn(2+), respectively. The maximum biosorption capacities of P. aeruginosa B237 and T. paurometabola A155 biomasses for Cd(2+) and Zn(2+) biosorptions were 16.89 and 16.75 mg g(-1), respectively, under optimal conditions. The experimental data of Cd(2+) and Zn(2+) biosorptions fitted well with Langmuir isotherm model, suggesting that Cd(2+) and Zn(2+) adsorptions occurred in a monolayer pattern on a homogeneous surface. Furthermore, the pseudo-second order and pseudo-first order kinetic models best described the biosorption kinetics of Cd(2+) and Zn(2+) adsorptions, respectively, suggesting that the Cd(2+) and Zn(2+) adsorptions took place mainly by chemisorption (Cd(2+)) and physisorption (Zn(2+)).


Subject(s)
Cadmium/isolation & purification , Mining , Soil Microbiology , Soil Pollutants/isolation & purification , Zinc/isolation & purification , Adsorption , Biomass , Cadmium/chemistry , Cell Wall/chemistry , Corynebacterium/growth & development , Cupriavidus/growth & development , Kinetics , Pseudomonas aeruginosa/growth & development , Soil Pollutants/chemistry , Thailand , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...