Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33539301

ABSTRACT

Falls are a major concern of public health, particularly for older adults, as the consequences of falls include serious injuries and death. Therefore, the understanding and evaluation of postural control is considered key, as its deterioration is an important risk factor predisposing to falls. In this work we introduce a new Langevin-based model, local recall, that integrates the information from both the center of pressure (CoP) and the center of mass (CoM) trajectories, and compare its accuracy to a previously proposed model that only uses the CoP. Nine healthy young participants were studied under quiet bipedal standing conditions with eyes either open or closed, while standing on either a rigid surface or a foam. We show that the local recall model produces significantly more accurate prediction than its counterpart, regardless of the eyes and surface conditions, and we replicate these results using another publicly available human dataset. Additionally, we show that parameters estimated using the local recall model are correlated with the quality of postural control, providing a promising method to evaluate static balance. These results suggest that this approach might be interesting to further extend our understanding of the underlying mechanisms of postural control in quiet stance.


Subject(s)
Postural Balance , Standing Position , Accidental Falls , Aged , Healthy Volunteers , Humans
2.
PLoS One ; 16(2): e0246790, 2021.
Article in English | MEDLINE | ID: mdl-33630865

ABSTRACT

Falling in Parkinsonian syndromes (PS) is associated with postural instability and consists a common cause of disability among PS patients. Current posturographic practices record the body's center-of-pressure displacement (statokinesigram) while the patient stands on a force platform. Statokinesigrams, after appropriate processing, can offer numerous posturographic features. This fact, although beneficial, challenges the efforts for valid statistics via standard univariate approaches. In this work, 123 PS patients were classified into fallers (PSF) or non-faller (PSNF) based on the clinical assessment, and underwent simple Romberg Test (eyes open/eyes closed). We developed a non-parametric multivariate two-sample test (ts-AUC) based on machine learning, in order to examine statokinesigrams' differences between PSF and PSNF. We analyzed posturographic features using both multiple testing with p-value adjustment and ts-AUC. While ts-AUC showed significant difference between groups (p-value = 0.01), multiple testing did not agree with this result (eyes open). PSF showed significantly increased antero-posterior movements as well as increased posturographic area compared to PSNF. Our study highlights the superiority of ts-AUC compared to standard statistical tools in distinguishing PSF and PSNF in multidimensional space. Machine learning-based statistical tests can be seen as a natural extension of classical statistics and should be considered, especially when dealing with multifactorial assessments.


Subject(s)
Accidental Falls , Machine Learning , Models, Neurological , Parkinsonian Disorders/physiopathology , Postural Balance , Aged , Aged, 80 and over , Female , Humans , Male , Parkinsonian Disorders/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...