Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 24(11): 9847-9858, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27680001

ABSTRACT

Membrane separation processes find applications in an array of fields as they use far less energy and chemical agents than competing processes. However, a major drawback of membrane technology is that biofilm formation alters membrane performances. Preventing biofilm formation is thus a pivotal challenge for larger-scale development of membrane processes. Here, we studied the comparative antibacterial activities of different inorganic membranes (ceramic and zeolite-coated ceramic with or without copper exchange) using several bacterial strains (Escherichia coli, Staphylococcus aureus, and Bacillus subtilis). In static conditions, alumina plates coated with Cu-exchanged zeolite showed significant bactericidal activity. In dynamic mode (circulation of a contaminated nutrient medium), there was no observable bacterial adhesion at the surface of the Cu-exchanged material. These results confirm the antifouling properties of the Cu-mordenite layer due to both the increased hydrophilicity and antibacterial properties of the active layer.Tests performed with tubular filtration membranes (without copper exchange) showed a significant decline in membrane hydraulic properties during filtration of culture media containing bacteria, whereas copper-exchanged membranes showed no decline in hydraulic permeability. Filtration tests performed with concentrated culture media containing spores of B. subtilis led to a significant decrease in membrane hydraulic permeabilities (but less so with Cu-exchanged membranes). The surfaces showed less effective global antifouling properties during the filtration of a concentrated culture medium due to competition between bacterial growth and the bactericidal effect of copper. Analyses of copper leached in solution show that after a conditioning step, the amount of copper released is negligible.


Subject(s)
Anti-Infective Agents/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Copper/chemistry , Escherichia coli/drug effects
2.
Water Environ Res ; 82(7): 648-56, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20669727

ABSTRACT

Heterogeneous chemical reactions are complicated, especially in the case of competitive reactions. The aim of this study was to investigate the elimination of nitrite (NO2(-)) by applying a metallic reduction using zero-valent zinc (Zn0). The effect of pH, stirring, and metal shape (powder and chips) on the rate and products of nitrite reduction were studied in a batch-stirred reactor. The obtained data have been used to optimize the conditions for metallic reduction of NO2(-) and for kinetic parameters identification. It was found that the dissolution of zinc involves a pseudo-first-order reaction independent of the shape of the metal. Further, the influence of operating conditions on nitrogen (N2) and ammonium (NH4(+)) formation has been determined. It was found that a decrease in pH and in the Zn0 content enhances NH4(+) production. If kinetic parameters can be approximated easily for constant surface area, it was demonstrated that surface evolution had to be integrated for metal powder. Finally, a numerical simulation has been used to determine the kinetic parameters for NO2(-) reduction with zinc powder.


Subject(s)
Nitrites/chemistry , Zinc/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Oxidation-Reduction , Powders
SELECTION OF CITATIONS
SEARCH DETAIL
...