Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 11(8): e1005077, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26248157

ABSTRACT

Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases affecting a wide range of mammalian species. They are caused by prions, a proteinaceous pathogen essentially composed of PrPSc, an abnormal isoform of the host encoded cellular prion protein PrPC. Constrained steric interactions between PrPSc and PrPC are thought to provide prions with species specificity, and to control cross-species transmission into other host populations, including humans. Transgenetic expression of foreign PrP genes has been successfully and widely used to overcome the recognized resistance of mouse to foreign TSE sources. Rabbit is one of the species that exhibit a pronounced resistance to TSEs. Most attempts to infect experimentally rabbit have failed, except after inoculation with cell-free generated rabbit prions. To gain insights on the molecular determinants of the relative resistance of rabbits to prions, we generated transgenic rabbits expressing the susceptible V136R154Q171 allele of the ovine PRNP gene on a rabbit wild type PRNP New Zealand background and assessed their experimental susceptibility to scrapie prions. All transgenic animals developed a typical TSE 6-8 months after intracerebral inoculation, whereas wild type rabbits remained healthy more than 700 days after inoculation. Despite the endogenous presence of rabbit PrPC, only ovine PrPSc was detectable in the brains of diseased animals. Collectively these data indicate that the low susceptibility of rabbits to prion infection is not enciphered within their non-PrP genetic background.


Subject(s)
PrPC Proteins/genetics , Scrapie/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified , Female , Immunoblotting , Male , Mass Spectrometry , Molecular Sequence Data , Rabbits , Reverse Transcriptase Polymerase Chain Reaction , Sheep , Species Specificity
2.
Genet Sel Evol ; 36(2): 217-42, 2004.
Article in English | MEDLINE | ID: mdl-15040900

ABSTRACT

This experiment was conducted to assess the efficiency of selection on the basis of response to artificial challenges in order to breed sheep resistant to natural infection. A short-term divergent selection process was designed to estimate the genetic parameters of these two traits. Two flocks, including 100 Romanov ram lambs each, were challenged in 1990 when they were 6 months old. One flock received three artificial infections with 20 000 third-stage Teladorsagia circumcincta larvae, at intervals of 7 weeks. Faecal egg counts (FEC) were performed on Days 22, 25 and 28 post infection (p.i.) and the animals were drenched on Day 28 p.i. The other flock was grazed for 5 months on a pasture contaminated with the same species. Faecal samples were taken from the lambs at similar ages. About 5 rams with the lowest FEC and 5 with the highest FEC were selected in each flock and mated with unselected ewes. Their offspring (200 animals) were challenged in 1992, half in the same way as their sires, and the other half by the other method. Because of a drought in the summer of 1990, it was necessary to repeat part of the experiment, and in 1992 the 5 and 8 rams with the lowest and highest FEC, respectively, were selected from the offspring challenged on the pasture in 1992 and were mated with unselected ewes. Their progeny (about 80 animals) were challenged in 1994, half by natural infection, half by artificial infection. The mean FEC of the flock increased from the first to the third artificial infection. The natural infection was highly variable in different years, reflecting the difficulty of assessing resistance using this mode of challenge. Genetic parameters were estimated using animal models and REML solutions. The repeatabilities of the FEC following artificial and natural infection were 0.49 and 0.70 respectively within a period of one week, and 0.22 and 0.41 respectively for periods separated by intervals of 7 weeks; the heritabilities of the single egg count were 0.22 and 0.38 respectively. The genetic correlation was 0.87: the FEC recorded under natural or artificial infection appear to depend on the same genetic potential.


Subject(s)
Immunity, Innate/genetics , Selection, Genetic , Sheep Diseases/genetics , Sheep Diseases/immunology , Trichostrongyloidea , Trichostrongyloidiasis/veterinary , Animals , Crosses, Genetic , Feces/chemistry , Immunity, Innate/immunology , Parasite Egg Count , Sex Factors , Sheep , Sheep Diseases/parasitology , Trichostrongyloidiasis/genetics , Trichostrongyloidiasis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...