Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 250: 116063, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38290379

ABSTRACT

Effective diagnostic tools for screening of latent tuberculosis infection (LTBI) are lacking. We aim to investigate the performance of LTBI diagnostic approaches using label-free surface-enhanced Raman spectroscopy (SERS). We used 1000 plasma samples from Northeast Thailand. Fifty percent of the samples had tested positive in the interferon-gamma release assay (IGRA) and 50 % negative. The SERS investigations were performed on individually prepared protein specimens using the Raman-mapping technique over a 7 × 7 grid area under measurement conditions that took under 10 min to complete. The machine-learning analysis approaches were optimized for the best diagnostic performance. We found that the SERS sensors provide 81 % accuracy according to train-test split analysis and 75 % for LOOCV analysis from all samples, regardless of the batch-to-batch variation of the sample sets and SERS chip. The accuracy increased to 93 % when the logistic regression model was used to analyze the last three batches of samples, following optimization of the sample collection, SERS chips, and database. We demonstrated that SERS analysis with machine learning is a potential diagnostic tool for LTBI screening.


Subject(s)
Biosensing Techniques , Latent Tuberculosis , Humans , Latent Tuberculosis/diagnosis , Interferon-gamma Release Tests/methods , Interferon-gamma , Spectrum Analysis, Raman
2.
ACS Sens ; 9(1): 206-216, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38114442

ABSTRACT

Though considerable progress has been achieved on gas molecule recognition by electronic nose (e-nose) comprised of nonselective (metal oxide) semiconductor chemiresistors, extracting adequate molecular features within short time (<1 s) remains a big obstacle, which hinders the emerging e-nose applications in lethal or explosive gas warning. Herein, by virtue of the ultrafast (∼20 µs) thermal relaxation time of self-heated WO3-based chemiresistors fabricated via oblique angle deposition, instead of external heating, self-heating temperature modulation has been proposed to generate sufficient electrical response features. Accurate discrimination of 12 gases (including 3 xylene isomers with the same function group and molecular weight) has been readily achieved within 0.5-1 s, which is one order faster than the state-of-the-art e-noses. A smart wireless e-nose, capable of instantaneously discriminating target gas in ambient air background, has been developed, paving the way for the practical applications of e-nose in the area of homeland security and public health.


Subject(s)
Gases , Heating , Temperature , Electronics , Oxides
3.
Polymers (Basel) ; 15(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37571056

ABSTRACT

The structural and optical characterizations of nanocomposite films of polymethyl methacrylate (PMMA) and SiO2/TiO2 composites prepared via the spin-coating technique were investigated using different SiO2:TiO2 ratios. The SiO2/TiO2 nanocomposites were synthesized using the sonochemical process with Si:Ti precursor ratios of 1:0.1, 1:0.5, 1:1, 1:2, 1:4, and 0:1. All characterizations of ultrafine SiO2/TiO2 particles were loaded at 1 wt.% in a PMMA matrix for the fabrication of transparent SiO2/TiO2/PMMA composite films. The phase structure and morphology of SiO2/TiO2/PMMA composite films were monitored using X-ray diffraction, optical microscopy, and field-emission scanning electron microscopy. A surface roughness analysis of SiO2/TiO2/PMMA nanocomposite films was conducted using atomic force microscopy. For optical characterization, transmission properties with different incident angles of SiO2/TiO2/PMMA composite films were analyzed with UV-vis spectrophotometry. The water contact angles of SiO2/TiO2/PMMA composite films were analyzed to identify hydrophilic properties on film surfaces. Photocatalytic reactions in SiO2TiO2 composite films under UV irradiation were evaluated using rhodamine B dye degradation. The optimal condition of SiO2/TiO2/PMMA nanocomposite films was obtained at a 1:1 SiO2:TiO2 ratio in self-cleaning applications, resulting from good particle dispersion and the presence of the TiO2 phase in the composite.

4.
Vet World ; 16(1): 204-214, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36855369

ABSTRACT

Background and Aim: Public health and food safety are gaining attention globally. Consumer health can be protected from chemical residues in meat by early detection or screening for antibiotic residues before selling the meat commercially. However, conventional practices are normally applied after slaughtering, which leads to massive business losses. This study aimed to use portable surface-enhanced Raman spectroscopy (SERS) equipped with multivariate curve resolution-alternation least squares (MCR-ALS) to determine the concentrations of enrofloxacin, oxytetracycline, and neomycin concentrations. This approach can overcome the problems of business loss, costs, and time-consumption, and limit of detection (LOD). Materials and Methods: Aqueous solutions of three standard antibiotics (enrofloxacin, oxytetracycline, and neomycin) with different concentrations were prepared, and the LOD for each antibiotic solution was determined using SERS. Extracted pig urine was spiked with enrofloxacin at concentrations of 10, 20, 50, 100, and 10,000 ppm. These solutions were investigated using SERS and MCR-ALS analysis. Urine samples from pigs at 1 and 7 days after enrofloxacin administration were collected and investigated using SERS and MCR-ALS to differentiate the urinary enrofloxacin concentrations. Results: The LOD of enrofloxacin, oxytetracycline, and neomycin in aqueous solutions were 0.5, 2.0, and 100 ppm, respectively. Analysis of enrofloxacin spiking in pig urine samples demonstrated the different concentrations of enrofloxacin at 10, 20, 50, 100, and 10,000 ppm. The LOD of spiking enrofloxacin was 10 ppm, which was 10 times lower than the regulated value. This technique was validated for the first time using urine collected on days 1 and 7 after enrofloxacin administration. The results revealed a higher concentration of enrofloxacin on day 7 than on day 1 due to consecutive administrations. The observed concentration of enrofloxacin was closely correlated with its circulation time and metabolism in pigs. Conclusion: A combination of SERS sensing platform and MCR-ALS is a promising technique for on-farming screening. This platform can increase the efficiency of antibiotic detection in pig urine at lower costs and time. Expansion and fine adjustments of the Raman dataset may be required for individual farms to achieve higher sensitivity.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122584, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36913899

ABSTRACT

Surface enhanced Raman spectroscopy (SERS) has been widely studied and recognized as a powerful label-free technique for trace chemical analysis. However, its drawback in simultaneously identifying several molecular species has greatly limited its real-world applications. In this work, we reported a combination between SERS and independent component analysis (ICA) to detect several trace antibiotics which are commonly used in aquacultures, including malachite green, furazolidone, furaltadone hydrochloride, nitrofurantoin, and nitrofurazone. The analysis results indicate that the ICA method is highly effective in decomposing the measured SERS spectra. The target antibiotics could be precisely identified when the number of components and the sign of each independent component loading were properly optimized. With SERS substrates, the optimized ICA can identify trace molecules in a mixture at a concentration of 10-6 M achieving the correlation values to the reference molecular spectra of 71-98%. Furthermore, measurement results obtained from a real-world sample demonstration could also be recognized as an important basis to suggest this method is promising for monitoring antibiotics in a real aquatic environment.


Subject(s)
Anti-Bacterial Agents , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121598, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35816867

ABSTRACT

Many countries have legalized cannabis and its derived products for multiple purposes. Consequently, it has become necessary to develop a rapid, effective, and reliable tool for detecting delta-9-tetrahydrocannabinol (THC) and cannabinol (CBN), which are important biologically active compounds in cannabis. Herein, we have fabricated SERS chips by using glancing angle deposition and tuned dimensions of silver nanorods (AgNRs) for detecting THC and CBN at low concentrations. Experimental and computational results showed that the AgNR substrate with film thickness (or nanorod length) of 150 nm, corresponding to nanorod diameter of 79 nm and gap between nanorods of 23 nm, can effectively sense trace THC and CBN with good reproducibility and sensitivity. Due to limited spectral studies of the cannabinoids in previous reports, this work also explored towards identifying characteristic Raman lines of THC and CBN. This information is critical to further reliable data analysis and interpretation. Moreover, multianalyte detection of THC and CBN in a mixture was successfully demonstrated by applying an open-source independent component analysis (ICA) model. The overall method is fast, sensitive, and reliable for sensing trace THC and CBN. The SERS chip-based method and spectral results here are useful for a variety of cannabis testing applications, such as product screening and forensic investigation.


Subject(s)
Cannabinoids , Cannabis , Cannabinoids/analysis , Cannabinol/analysis , Cannabis/chemistry , Dronabinol/analysis , Reproducibility of Results
7.
J Nanosci Nanotechnol ; 20(8): 5006-5013, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32126691

ABSTRACT

In the present study, indium tin oxide (ITO) nanorod films were produced by usage of ion-assisted electron-beam evaporation with a glancing angle deposition technique. The as-produced ITO nanorod films were annealed in the temperature range of 100-500 °C for two hours in a vacuum atmosphere. The as-produced ITO nanorod films exhibited (222) and (611) preferred orientations from the X-ray diffraction pattern. After vacuum annealing at 500 °C, the ITO nanorod films demonstrated many preferred orientations and the improvement of film crystallinity. The sheet resistance of the as-produced ITO nanorod films was 11.92 Ω/ and was found to be 13.63 Ω/ by annealing at 500 °C. The as-produced and annealed ITO nanorod films had a rod diameter of around 80 nm and transmittance in a visible zone of around 90%. The root mean square roughness of the as-produced ITO nanorod film's surface was 5.49 nm, which increased to 13.77 nm at an annealing temperature of 500 °C. The contact angle of the as-produced ITO nanorod films was 110.9° and increased to 116.5° after annealing at 500 °C.

8.
J Nanosci Nanotechnol ; 19(3): 1432-1438, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30469201

ABSTRACT

Indium tin oxide (ITO) nanorod films were deposited onto glass slides and Si wafers using ionassisted electron beam evaporation with a glancing angle deposition technique. The annealing influence on the basic properties of the as-deposited ITO nanorod films was studied in the range of 100-500 °C for two hours in air. The crystallinity of the ITO nanorod films was enhanced with the increasing annealing temperature, and the average transmission of the as-deposited ITO nanorod films in the visible range was 90%. This value did not change significantly after the annealing process. The optical bandgap of the as-deposited ITO nanorod films was 3.94 eV and increased slightly after annealing. The sheet resistance of the as-deposited ITO nanorod films was 12.9 Ω/ and increased to 57.8 Ω/ at an annealing temperature of 500 °C. The as-deposited ITO nanorod films showed nanorod structures with average diameters of 79 nm, which changed slightly with the annealing temperature. The root mean square roughness of the as-deposited ITO nanorod films was 7.9 nm and changed slightly with annealing. The as-deposited ITO nanorod films had an average contact angle of 110.9°, which decreased to 64.2° at an annealing temperature of 500 °C. The experimental results showed that varying the annealing temperature influenced the structural, electrical and wettability properties of the ITO nanorod films while the optical properties and surface morphology were almost unaffected.

9.
Tuberculosis (Edinb) ; 108: 195-200, 2018 01.
Article in English | MEDLINE | ID: mdl-29523323

ABSTRACT

Nanostructures have been multiplying the advantages of Raman spectroscopy and further amplify the advantages of Raman spectroscopy is a continuous effort focused on the appropriate design of nanostructures. Herein, we designed different shapes of plasmonic nanostructures such as Vertical, Zig Zag, Slant nanorods and Spherical nanoparticles employing the DC magnetron sputtering system as SERS-active substrates for ultrasensitive detection of target molecules. The fabricated plasmonic nanostructures sensitivity and uniformity were exploited by reference dye analyte. These nanostructures were utilized in the label free detection of infectious disease, Tuberculosis (TB). For the first time, TB detection from serum samples using SERS has been demonstrated. Various multivariate statistical methods such as principal component analysis, support vector machine, decision tree and random forest were developed and tested their ability to discriminate the healthy and active TB samples. The results demonstrate the performance of the SERS spectra, chemometric methods and potential of the method in clinical diagnosis.


Subject(s)
Antigens, Bacterial/blood , Bacterial Proteins/blood , Metal Nanoparticles/chemistry , Mycobacterium tuberculosis/metabolism , Nanomedicine/methods , Spectrum Analysis, Raman/methods , Tuberculosis/blood , Tuberculosis/diagnosis , Adsorption , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Biomarkers/blood , Case-Control Studies , Decision Trees , Humans , Multivariate Analysis , Mycobacterium tuberculosis/immunology , Predictive Value of Tests , Principal Component Analysis , Reproducibility of Results , Support Vector Machine , Surface Properties , Tuberculosis/immunology , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...