Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 9(12): e114046, 2014.
Article in English | MEDLINE | ID: mdl-25549335

ABSTRACT

Massively parallel collaboration and emergent knowledge generation is described through a large scale survey for archaeological anomalies within ultra-high resolution earth-sensing satellite imagery. Over 10K online volunteers contributed 30K hours (3.4 years), examined 6,000 km², and generated 2.3 million feature categorizations. Motivated by the search for Genghis Khan's tomb, participants were tasked with finding an archaeological enigma that lacks any historical description of its potential visual appearance. Without a pre-existing reference for validation we turn towards consensus, defined by kernel density estimation, to pool human perception for "out of the ordinary" features across a vast landscape. This consensus served as the training mechanism within a self-evolving feedback loop between a participant and the crowd, essential driving a collective reasoning engine for anomaly detection. The resulting map led a National Geographic expedition to confirm 55 archaeological sites across a vast landscape. A increased ground-truthed accuracy was observed in those participants exposed to the peer feedback loop over those whom worked in isolation, suggesting collective reasoning can emerge within networked groups to outperform the aggregate independent ability of individuals to define the unknown.


Subject(s)
Archaeology/methods , Crowdsourcing , Satellite Imagery , Female , Humans , Male
2.
J Mech Behav Biomed Mater ; 1(3): 208-26, 2008 Jul.
Article in English | MEDLINE | ID: mdl-19627786

ABSTRACT

Mineralized biological tissues offer insight into how nature has evolved these components to optimize multifunctional purposes. These mineral constituents are weak by themselves, but interact with the organic matrix to produce materials with unexpected mechanical properties. The hierarchical structure of these materials is at the crux of this enhancement. Microstructural features such as organized, layered organic/inorganic structures and the presence of porous and fibrous elements are common in many biological components. The organic and inorganic portions interact at the molecular and micro-levels synergistically to enhance the mechanical function. In this paper, we report on recent progress on studies of the abalone and Araguaia river clam shells, arthropod exoskeletons, antlers, tusks, teeth and bird beaks.


Subject(s)
Bone and Bones/chemistry , Bone and Bones/physiology , Calcification, Physiologic/physiology , Models, Biological , Animals , Compressive Strength , Elastic Modulus/physiology , Hardness , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL