Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 10(7)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35878279

ABSTRACT

Heavy metals are major pollutants that pose threats to wetland environments. In the present study, surface sediments from wetlands vegetated by invasive species Spartina alterniflora in the Yellow River Delta were collected and determined for the mass fractions of Co, Ni, As, Cd and Pb. Results showed mass fractions of Co, Ni, As, Cd and Pb in the sediments of the S. alterniflora communities ranged from 8.5 to 16.0, 13.9−27.9, 3.2−13.8, 0.08−0.24, and 17.6−37.5 mg/kg dw, respectively, generally presenting an order of Pb > Ni > Co > As > Cd. The levels of heavy metals in sediments in the S. alterniflora communities were higher than those in the wetland vegetated by the native plant species Suaeda heteroptera. Correlations among metal elements were highly significant, suggesting that they might have the same sources. Clay and TOC were important factors affecting the spatial distribution of metals. The Igeo values of the investigated elements in the sediments were frequently lower than 0, revealing the slight pollution status of these metals. Relatively slight values of Eri and RI suggested that the potential ecological risks caused by the 5 metals were low. Our findings could provide a better understanding of the correlation between metal pollution and bio-invasion in wetland ecosystems.

2.
Chemosphere ; 296: 134014, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35182531

ABSTRACT

2,6-dichloro-1,4-benzoquinone (DCBQ), a typical representative of Halobenzoquinones, is an emerging aromatic disinfection by-product (DBP) with high toxicity and carcinogenicity, generated commonly through the chlorination in the drinking water disinfection process while there is still a lack of research on its removal. In this study, the effects of ultraviolet-based advanced oxidation processes (UV-AOPs) on the degradation of DCBQ were evaluated. The results showed that UV-AOPs are effective in degrading DCBQ. The removal of DCBQ by UV/H2O2/O3 was more significant than by UV/H2O2 or UV/O3, achieving a 96.7% removal rate at both the O3 and H2O2 doses of 1 mg/L. The results also indicated the alkaline and weakly acidic environments could facilitate the degradation of DCBQ, inorganic anions could inhibit DCBQ degradation and the degree of inhibition increased as the matrix concentration increased. The degradation of DCBQ was inhibited more by the CO32- than the other matrix components, such as Cl- and NO3-. It was shown by the density functional theory simulations and the ultrahigh-performance liquid chromatography (UPLC) - Orbitrap mass spectra that the electrons in DCBQ are mainly on the chlorine atom connected to the carboatomic ring and that OH• can attack the chlorine atom to cause de-chlorination. The DCBQ degradation pathway may involve the oxidation of DCBQ to 3-hydroxy-2,6-DCBQ (HO-DCBQ) and 3,5-dichloro-1,2,4-pyrogallol, the further degradation of intermediate products by OH• to dechlorinated forms of HO-DCBQ and DCBQ.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Benzoquinones , Chlorine , Disinfection/methods , Halogens , Hydrogen Peroxide , Oxidation-Reduction , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Water Purification/methods
3.
Environ Res ; 191: 110104, 2020 12.
Article in English | MEDLINE | ID: mdl-32853664

ABSTRACT

Phosphoric acid is used to in-situ activate biochar pyrolyzed by cotton shells to enhance the adsorption ability of sulfadiazine (SDZ). To confirm the optimum condition, different impregnation ratios and impregnation times were investigated. It was found that the biochar (BC) pyrolyzed under the condition of an impregnation ratio of 2.5 and an impregnation time of 6 h showed the highest performance for the removal of SDZ. The maximum adsorption ability was 86.89 mg/g at a temperature of 298 K. The pseudo-second-order model was used to disclose the adsorption process of SDZ by BCs. The experimental data were described by the Langmuir and Temkin isotherms at different temperatures. It was found that the sorption of SDZ was an exothermic process according to the thermomechanical analysis. The activated BC could be recycled for at least five times with a high removal rate of SDZ. Thus, activated BCs are regarded as promising adsorbents for SDZ removal.


Subject(s)
Sulfadiazine , Water Pollutants, Chemical , Adsorption , Charcoal , Kinetics , Water Pollutants, Chemical/analysis
4.
J Hazard Mater ; 308: 113-9, 2016 May 05.
Article in English | MEDLINE | ID: mdl-26808249

ABSTRACT

The adsorption of organic pollutants from super heavy oil wastewater (SHOW) by lignite activated coke (LAC) was investigated. Specifically, the effects of LAC adsorption on pH, BOD5/COD(Cr)(B/C), and the main pollutants before and after adsorption were examined. The removed organic pollutants were characterized by Fourier transform infrared spectroscopy (FTIR), Boehm titrations, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with organic carbon detection (LC-OCD). FTIR spectra indicated that organic pollutants containing -COOH and -NH2 functional groups were adsorbed from the SHOW. Boehm titrations further demonstrated that carboxyl, phenolic hydroxyl, and lactonic groups on the surface of the LAC increased. GC-MS showed that the removed main organic compounds are difficult to be degraded or extremely toxics to aquatic organisms. According to the results of LC-OCD, 30.37 mg/L of dissolved organic carbons were removed by LAC adsorption. Among these, hydrophobic organic contaminants accounted for 25.03 mg/L. Furthermore, LAC adsorption was found to increase pH and B/C ratio of the SHOW. The mechanisms of adsorption were found to involve between the hydrogen bonding and the functional groups of carboxylic, phenolic, and lactonic on the LAC surface. In summary, all these results demonstrated that LAC adsorption can remove bio-refractory DOCs, which is beneficial for biodegradation.


Subject(s)
Coal , Coke , Organic Chemicals/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Petroleum , Waste Disposal, Fluid/methods , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...