Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
NAR Cancer ; 6(1): zcad060, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38204924

ABSTRACT

Cancer vaccines have been increasingly studied and developed to prevent or treat various types of cancers. To systematically survey and analyze different reported cancer vaccines, we developed CanVaxKB (https://violinet.org/canvaxkb), the first web-based cancer vaccine knowledgebase that compiles over 670 therapeutic or preventive cancer vaccines that have been experimentally verified to be effective at various stages. Vaccine construction and host response data are also included. These cancer vaccines are developed against various cancer types such as melanoma, hematological cancer, and prostate cancer. CanVaxKB has stored 263 genes or proteins that serve as cancer vaccine antigen genes, which we have collectively termed 'canvaxgens'. Top three mostly used canvaxgens are PMEL, MLANA and CTAG1B, often targeting multiple cancer types. A total of 193 canvaxgens are also reported in cancer-related ONGene, Network of Cancer Genes and/or Sanger Cancer Gene Consensus databases. Enriched functional annotations and clusters of canvaxgens were identified and analyzed. User-friendly web interfaces are searchable for querying and comparing cancer vaccines. CanVaxKB cancer vaccines are also semantically represented by the community-based Vaccine Ontology to support data exchange. Overall, CanVaxKB is a timely and vital cancer vaccine source that facilitates efficient collection and analysis, further helping researchers and physicians to better understand cancer mechanisms.

2.
Standards (Basel) ; 3(3): 316-340, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37873508

ABSTRACT

The translational research community, in general, and the Clinical and Translational Science Awards (CTSA) community, in particular, share the vision of repurposing EHRs for research that will improve the quality of clinical practice. Many members of these communities are also aware that electronic health records (EHRs) suffer limitations of data becoming poorly structured, biased, and unusable out of original context. This creates obstacles to the continuity of care, utility, quality improvement, and translational research. Analogous limitations to sharing objective data in other areas of the natural sciences have been successfully overcome by developing and using common ontologies. This White Paper presents the authors' rationale for the use of ontologies with computable semantics for the improvement of clinical data quality and EHR usability formulated for researchers with a stake in clinical and translational science and who are advocates for the use of information technology in medicine but at the same time are concerned by current major shortfalls. This White Paper outlines pitfalls, opportunities, and solutions and recommends increased investment in research and development of ontologies with computable semantics for a new generation of EHRs.

3.
J Biomed Semantics ; 13(1): 25, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271389

ABSTRACT

BACKGROUND: The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important role in standard-based knowledge and data representation, integration, sharing, and analysis. Accordingly, we initiated the development of the community-based Coronavirus Infectious Disease Ontology (CIDO) in early 2020. RESULTS: As an Open Biomedical Ontology (OBO) library ontology, CIDO is open source and interoperable with other existing OBO ontologies. CIDO is aligned with the Basic Formal Ontology and Viral Infectious Disease Ontology. CIDO has imported terms from over 30 OBO ontologies. For example, CIDO imports all SARS-CoV-2 protein terms from the Protein Ontology, COVID-19-related phenotype terms from the Human Phenotype Ontology, and over 100 COVID-19 terms for vaccines (both authorized and in clinical trial) from the Vaccine Ontology. CIDO systematically represents variants of SARS-CoV-2 viruses and over 300 amino acid substitutions therein, along with over 300 diagnostic kits and methods. CIDO also describes hundreds of host-coronavirus protein-protein interactions (PPIs) and the drugs that target proteins in these PPIs. CIDO has been used to model COVID-19 related phenomena in areas such as epidemiology. The scope of CIDO was evaluated by visual analysis supported by a summarization network method. CIDO has been used in various applications such as term standardization, inference, natural language processing (NLP) and clinical data integration. We have applied the amino acid variant knowledge present in CIDO to analyze differences between SARS-CoV-2 Delta and Omicron variants. CIDO's integrative host-coronavirus PPIs and drug-target knowledge has also been used to support drug repurposing for COVID-19 treatment. CONCLUSION: CIDO represents entities and relations in the domain of coronavirus diseases with a special focus on COVID-19. It supports shared knowledge representation, data and metadata standardization and integration, and has been used in a range of applications.


Subject(s)
COVID-19 , Communicable Diseases , Coronavirus , Vaccines , Humans , SARS-CoV-2 , Pandemics , Amino Acids , COVID-19 Drug Treatment
4.
J Am Med Inform Assoc ; 29(12): 2161-2167, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36094062

ABSTRACT

Natural hazards (NHs) associated with climate change have been increasing in frequency and intensity. These acute events impact humans both directly and through their effects on social and environmental determinants of health. Rather than relying on a fully reactive incident response disposition, it is crucial to ramp up preparedness initiatives for worsening case scenarios. In this perspective, we review the landscape of NH effects for human health and explore the potential of health informatics to address associated challenges, specifically from a preparedness angle. We outline important components in a health informatics agenda for hazard preparedness involving hazard-disease associations, social determinants of health, and hazard forecasting models, and call for novel methods to integrate them toward projecting healthcare needs in the wake of a hazard. We describe potential gaps and barriers in implementing these components and propose some high-level ideas to address them.


Subject(s)
Climate Change , Informatics , Humans , Forecasting
5.
Adv Genet (Hoboken) ; 3(2): 2100056, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35574521

ABSTRACT

The characteristics of a person's health status are often guided by how they live, grow, learn, their genetics, as well as their access to health care. Yet, all too often, studies examining the relationship between social determinants of health (behavioral, sociocultural, and physical environmental factors), the role of demographics, and health outcomes poorly represent these relationships, leading to misinterpretations, limited study reproducibility, and datasets with limited representativeness and secondary research use capacity. This is a profound hurdle in what questions can or cannot be rigorously studied about COVID-19. In practice, gene-environment interactions studies have paved the way for including these factors into research. Similarly, our understanding of social determinants of health continues to expand with diverse data collection modalities as health systems, patients, and community health engagement aim to fill the knowledge gaps toward promoting health and wellness. Here, a conceptual framework is proposed, adapted from the population health framework, socioecological model, and causal modeling in gene-environment interaction studies to integrate the core constructs from each domain with practical considerations needed for multidisciplinary science.

6.
CEUR Workshop Proc ; 3073: 122-127, 2022.
Article in English | MEDLINE | ID: mdl-37324543

ABSTRACT

Ontologies have emerged to become critical to support data and knowledge representation, standardization, integration, and analysis. The SARS-CoV-2 pandemic led to the rapid proliferation of COVID-19 data, as well as the development of many COVID-19 ontologies. In the interest of supporting data interoperability, we initiated a community-based effort to harmonize COVID-19 ontologies. Our effort involves the collaborative discussion among developers of seven COVID-19 related ontologies, and the merging of four ontologies. This effort demonstrates the feasibility of harmonizing these ontologies in an interoperable framework to support integrative representation and analysis of COVID-19 related data and knowledge.

7.
CEUR Workshop Proc ; 28072020 Sep.
Article in English | MEDLINE | ID: mdl-35992013

ABSTRACT

Driven by the use cases of PubChemRDF and SCAIView, we have developed a first community-based clinical trial ontology (CTO) by following the OBO Foundry principles. CTO uses the Basic Formal Ontology (BFO) as the top level ontology and reuses many terms from existing ontologies. CTO has also defined many clinical trial-specific terms. The general CTO design pattern is based on the PICO framework together with two applications. First, the PubChemRDF use case demonstrates how a drug Gleevec is linked to multiple clinical trials investigating Gleevec's related chemical compounds. Second, the SCAIView text mining engine shows how the use of CTO terms in its search algorithm can identify publications referring to COVID-19-related clinical trials. Future opportunities and challenges are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...