Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 10(1): 4539, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31586123

ABSTRACT

In recent years, light-guided robotic soft actuators have attracted intense scientific attention and rapidly developed, although it still remains challenging to precisely and reversibly modulate the moving directions and shape morphing modes of soft actuators with ease of stimulating operation. Here we report a strategy of building a multi-stimuli-responsive liquid crystal elastomer soft actuator system capable of performing not only multi-directional movement, but also different shape morphing modes. This strategy is based on the selective stimulation of specific domains of the hierarchical structured actuator through the modulation of three wavelength bands (520, 808, 980 nm) of light stimulus, which release the actuation system from light scanning position/direction restriction. Three near-infrared dual-wavelength modulated actuators and one visible/infrared tri-wavelength modulated multi-directional walker robot are demonstrated in this work. These devices have broad application prospects in robotic and biomimetic technology.

2.
J Am Chem Soc ; 141(36): 14364-14369, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31429282

ABSTRACT

Liquid-crystal elastomer (LCE) materials, which have been developed and investigated for 4 decades, still lack real industrial applications. The fundamental obstacle is the modest force of LCEs generated in the LC-to-isotropic phase transition process, which is the most important actuation moment. Here, we report an interpenetrating liquid-crystal polyurethane/polyacrylate elastomer material, consisting of one main-chain polyurethane LCE and another liquid-crystal polyacrylate thermoset network, which are simultaneously polymerized. This two-way shape memory material can reversibly shrink/expand under thermal stimulus and show ultrastrong actuation-mechanics properties. With a maximum shrinkage ratio of 86% at 140 °C, which is beyond the LC-to-isotropic phase transition, its actuation blocking stress, actuation work capacity, breaking strength, and elastic modulus reach 2.53 MPa, 1267.7 kJ/m3, 7.9 MPa, and 10.4 MPa, respectively. Such LCE material can lift up a load 30 000 times heavier than its own weight. We hope the outstanding mechanical properties of this interpenetrating polymer network-LCE material would pave the way for real industrial utilizations of LCE-based soft actuators.

3.
RSC Adv ; 8(22): 11843-11849, 2018 Mar 26.
Article in English | MEDLINE | ID: mdl-35539381

ABSTRACT

Chemical incorporation of enzymes onto polymeric materials has recently attracted intense scientific attention. Cross-linked polysiloxane gels as a typical super-hydrophobic support, are a good candidate for supporting enzymes in low-water organic medium to efficiently catalyze peptide synthesis because the hydrophobic polysiloxane matrix can prevent water from attacking the acyl-enzyme intermediate, which is beneficial for the shift in equilibrium to peptide formation. In this work, we develop a facile strategy to photoimmobilize olefin-functionalized chymotrypsin onto cross-linked polysiloxane gels via UV-initiated thiol-ene click chemistry. The impacts of water addition amount, heat-treatment and recyclability of the immobilized chymotrypsin influencing the peptide synthesis efficiency are investigated. Compared with the native chymotrypsin, polysiloxane-immobilized chymotrypsin showed advantageous catalytic activity, higher thermal stability and superior recyclability.

4.
J Am Chem Soc ; 139(33): 11333-11336, 2017 08 23.
Article in English | MEDLINE | ID: mdl-28786668

ABSTRACT

In this Communication, we develop a two-step acyclic diene metathesis in situ polymerization/cross-linking method to synthesize uniaxially aligned main-chain liquid crystal elastomers with chemically bonded near-infrared absorbing four-alkenyl-tailed croconaine-core cross-linkers. Because of the extraordinary photothermal conversion property, such a soft actuator material can raise its local temperature from 18 to 260 °C in 8 s, and lift up burdens 5600 times heavier than its own weight, under 808 nm near-infrared irradiation.

5.
Soft Matter ; 13(32): 5463-5468, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28726970

ABSTRACT

The development of pure polymeric films with anisotropic thermal conductivities for electronic device packaging applications has attracted intense scientific attention. In order to enhance the polymeric film's normal-direction thermal conductivity, homeotropic alignment of macromolecular chains is the primary concern. One of the promising preparation strategies is to perform in situ photopolymerization of homeotropic-oriented liquid crystal monomers. In this work, we design and synthesize a novel tolane-core thiol-ene-tailed liquid crystal monomer. Benefitting from the conjugated and extended tolane π-system of the mesogenic core and length extension of the terminal aliphatic tails, the normal-to-plane thermal conductivity value and the thermal conductivity anisotropy value of the corresponding cross-linked main-chain end-on liquid crystal polymer (xMELCP) film reach 3.56 W m-1 K-1 and 15.0, respectively. Compared with the data of a previously reported ester-type thiol-ene xMELCP film, the two primary values of this novel tolane-type thiol-ene xMELCP material are increased dramatically by 46% and 29%, respectively.

6.
Chem Commun (Camb) ; 53(11): 1844-1847, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28111651

ABSTRACT

In this communication, we describe a two-stage temperature-varied photopatterning protocol to synthesize a series of single-layer dual-phase liquid crystalline elastomer films, which have the capabilities to perform versatile three-dimensional motions, such as bending, accordion-folding, wrinkling, curling, and buckling, under thermal stimulus.

7.
Nat Commun ; 7: 13981, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28004810

ABSTRACT

In nature, plant tendrils can produce two fundamental motion modes, bending and chiral twisting (helical curling) distortions, under the stimuli of sunlight, humidity, wetting or other atmospheric conditions. To date, many artificial plant-like mechanical machines have been developed. Although some previously reported materials could realize bending or chiral twisting through tailoring the samples into various ribbons along different orientations, each single ribbon could execute only one deformation mode. The challenging task is how to endow one individual plant tendril mimic material with two different, fully tunable and reversible motion modes (bending and chiral twisting). Here we show a dual-layer, dual-composition polysiloxane-based liquid crystal soft actuator strategy to synthesize a plant tendril mimic material capable of performing two different three-dimensional reversible transformations (bending versus chiral twisting) through modulation of the wavelength band of light stimuli (ultraviolet versus near-infrared). This material has broad application prospects in biomimetic control devices.

8.
Chemistry ; 22(50): 18197-18207, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27723952

ABSTRACT

Encapsulation of inorganic nanoparticles (NPs) in the interfaces of amphiphilic vesicles is a challenging task. The traditional strategy is to use amphiphilic triblock co-polymers, which possess two outer blocks for building the walls and coronas of the vesicles, and one middle NP binding block for localizing NPs at the vesicle interfaces. In this manuscript, we describe the design and synthesis of an amphiphilic diblock co-polymer, that is, PEG-SH-b-PS (PEG=poly(ethylene glycol), PS=polystyrene) bearing a cysteine junction with one free pendant thiol group at the center point between the hydrophilic poly(ethylene glycol) block and the hydrophobic polystyrene block. The amphiphilicity-driven self-assembly in aqueous solution of the pure linear diblock co-polymer PEG-SH-b-PS and the corresponding amphiphilic PEG-SH-b-PS/gold NPs (GNPs) nanocomposites is examined. From TEM observations of the self-assembled samples containing the conjugated GNPs, it can be concluded that most of the GNPs are dispersed at the interfaces of the formed vesicles. In addition, near-infrared (NIR)-absorbing copper monosulfide (CuS) NPs are also encapsulated into the PEG-SH-b-PS vesicles. Due to the photothermal heating effect of the CuS NPs, the corresponding PEG-SH-b-PS/CuSNPs vesicles can disassemble and release the embedded cargos under NIR illumination, which endows this nanocomposite material with potential in biomedical applications, such as cancer imaging, photothermal therapy, and drug delivery.

9.
Soft Matter ; 12(28): 6148-56, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27357571

ABSTRACT

A series of new columnar liquid crystals containing an adamantane central unit with its four bridgehead positions partially or fully decorated with different numbers (1-4) of 3,4,5-tris(dodecyloxy)phenyl carbamoyl groups were designed and investigated carefully to explore the structure-property correlations. The molecular structures and mesomorphic properties of the DLCs were characterized by (1)H-NMR, (13)C-NMR, IR, UV-vis, POM, DSC and XRD. It was found that the mesophase symmetry and thermal stability were extremely dependent on the structures of the adamantane derivatives. No mesophase was observed for the 1-adamantanecarboxylic acid derivative ADLC1, while two different mesophases were observed for ADLC2, a 1,3-disubstituted derivative functionalized with two 3,4,5-tris(dodecyloxy)phenyl carbamoyl groups at two symmetric bridgehead positions. At lower temperature ADLC2 exhibited a rectangular columnar phase, which switched to a square columnar phase possessing a wide temperature range. Similarly, a hexagonal columnar mesophase was observed for the bridgehead trisubstituted adamantane molecule ADLC3. Interestingly, the fully bridgehead-functionalized 1,3,5,7-tetrasubstituted adamantane compound ADLC4 completely lost liquid crystallinity.

10.
Chem Commun (Camb) ; 52(23): 4313-6, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26960421

ABSTRACT

Homeotropically-aligned main-chain and side-on liquid crystalline elastomer films are prepared by using LC thiol-ene and acrylate systems respectively. Evaluated by laser flash analysis, the room temperature thermal conductivities of these two LCP films in the film normal direction are both dramatically higher than those along the horizontal direction.

11.
Chem Sci ; 7(7): 4400-4406, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-30155087

ABSTRACT

In this work, we report the first example of a calamitic mesogenic near-infrared (NIR) absorbing organic dye, made by functionalizing a thiophene-croconaine chromophore rigid core with two symmetric long flexible alkyl chains. The liquid crystal (LC) NIR dye YHD796 exhibits a sharp and intense NIR absorption band with a maximum absorption peak at 796 nm. Taking advantage of the improved solubility of YHD796 dispersed in mesogenic molecules, a homogeneously-aligned mono-domain liquid crystalline elastomer (LCE)/YHD796 composite film is successfully prepared by applying the classical LC-cell-alignment method and in situ photo-polymerization of photocurable LC monomer mixtures. This LCE/YHD796 composite film performs a fully reversible contraction/expansion response towards NIR light stimulus due to the photo-thermal heating effect induced by the YHD796 dye well-dispersed in the LCE matrix.

12.
Chem Commun (Camb) ; 51(60): 12126-9, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26122673

ABSTRACT

A novel NIR-responsive GNR/LCE composite fiber material was prepared by a three-step sequential thiol-click chemistry approach. Taking advantage of GNRs' significant photo-thermal effect, a GNR/LCE composite material with a very low Au loading-level (0.09 wt%), under 808 nm NIR stimulus achieved the N-to-I transition and shrank dramatically in an ambient environment.


Subject(s)
Elastomers/chemistry , Gold/chemistry , Liquid Crystals/chemistry , Nanotubes/chemistry , Nanotubes/radiation effects , Sulfhydryl Compounds/chemistry , Click Chemistry , Infrared Rays , Nanocomposites/chemistry , Nanocomposites/radiation effects , Nanocomposites/ultrastructure , Nanotubes/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...