Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(21)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34769330

ABSTRACT

Giardia lamblia persists in a dormant state with a protective cyst wall for transmission. It is incompletely known how three cyst wall proteins (CWPs) are coordinately synthesized during encystation. Meiotic recombination is required for sexual reproduction in animals, fungi, and plants. It is initiated by formation of double-stranded breaks by a topoisomerase-like Spo11. It has been shown that exchange of genetic material in the fused nuclei occurs during Giardia encystation, suggesting parasexual recombination processes of this protozoan. Giardia possesses an evolutionarily conserved Spo11 with typical domains for cleavage reaction and an upregulated expression pattern during encystation. In this study, we asked whether Spo11 can activate encystation process, like other topoisomerases we previously characterized. We found that Spo11 was capable of binding to both single-stranded and double-stranded DNA in vitro and that it could also bind to the cwp promoters in vivo as accessed in chromatin immunoprecipitation assays. Spo11 interacted with WRKY and MYB2 (named from myeloblastosis), transcription factors that can activate cwp gene expression during encystation. Interestingly, overexpression of Spo11 resulted in increased expression of cwp1-3 and myb2 genes and cyst formation. Mutation of the Tyr residue for the active site or two conserved residues corresponding to key DNA-binding residues for Arabidopsis Spo11 reduced the levels of cwp1-3 and myb2 gene expression and cyst formation. Targeted disruption of spo11 gene with CRISPR/Cas9 system led to a significant decrease in cwp1-3 and myb2 gene expression and cyst number. Our results suggest that Spo11 acts as a positive regulator for Giardia differentiation into cyst.


Subject(s)
Cell Differentiation , Cysts/pathology , Endodeoxyribonucleases/metabolism , Gene Expression Regulation , Protozoan Proteins/metabolism , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cysts/genetics , Cysts/metabolism , Endodeoxyribonucleases/genetics , Giardia lamblia , Promoter Regions, Genetic , Protozoan Proteins/genetics
2.
Biochim Biophys Acta Gen Subj ; 1865(6): 129859, 2021 06.
Article in English | MEDLINE | ID: mdl-33581251

ABSTRACT

BACKGROUND: Giardia lamblia differentiates into resistant cysts as an established model for dormancy. Myeloid leukemia factor (MLF) proteins are important regulators of cell differentiation. Giardia possesses a MLF homolog which was up-regulated during encystation and localized to unknown cytosolic vesicles named MLF vesicles (MLFVs). METHODS: We used double staining for visualization of potential factors with role in protein metabolism pathway and a strategy that employed a deletion mutant, CDK2m3, to test the protein degradation pathway. We also explored whether autophagy or proteasomal degradation are regulators of Giardia encystation by treatment with MG132, rapamycin, or chloroquine. RESULTS: Double staining of MLF and ISCU or CWP1 revealed no overlap between their vesicles. The aberrant CDK2m3 colocalized with MLFVs and formed complexes with MLF. MG132 increased the number of CDK2m3-localized vesicles and its protein level. We further found that MLF colocalized and interacted with a FYVE protein and an ATG8-like (ATG8L) protein, which were up-regulated during encystation and their expression induced Giardia encystation. The addition of MG132, rapamycin, or chloroquine, increased their levels and the number of their vesicles, and inhibited the cyst formation. MLF and FYVE were detected in exosomes released from culture. CONCLUSIONS: The MLFVs are not mitosomes or encystation-specific vesicles, but are related with degradative pathway for CDK2m3. MLF, FYVE, and ATG8L play a positive role in encystation and function in protein clearance pathway, which is important for encystation and coordinated with Exosomes. GENERAL SIGNIFICANCE: MLF, FYVE, and ATG8L may be involved an encystation-induced protein metabolism during Giardia differentiation.


Subject(s)
Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase 2/metabolism , Cysts/pathology , Giardia lamblia/metabolism , Parasite Encystment , Protozoan Proteins/metabolism , Cell Cycle Proteins/genetics , Cyclin-Dependent Kinase 2/genetics , Cysts/metabolism , Giardia lamblia/genetics , Giardia lamblia/growth & development , Protozoan Proteins/genetics
3.
4.
PLoS Negl Trop Dis ; 7(5): e2218, 2013.
Article in English | MEDLINE | ID: mdl-23696909

ABSTRACT

The protozoan Giardia lamblia differentiates into infectious cysts within the human intestinal tract for disease transmission. Expression of the cyst wall protein (cwp) genes increases with similar kinetics during encystation. However, little is known how their gene regulation shares common mechanisms. DNA topoisomerases maintain normal topology of genomic DNA. They are necessary for cell proliferation and tissue development as they are involved in transcription, DNA replication, and chromosome condensation. A putative topoisomerase II (topo II) gene has been identified in the G. lamblia genome. We asked whether Topo II could regulate Giardia encystation. We found that Topo II was present in cell nuclei and its gene was up-regulated during encystation. Topo II has typical ATPase and DNA cleavage activity of type II topoisomerases. Mutation analysis revealed that the catalytic important Tyr residue and cleavage domain are important for Topo II function. We used etoposide-mediated topoisomerase immunoprecipitation assays to confirm the binding of Topo II to the cwp promoters in vivo. Interestingly, Topo II overexpression increased the levels of cwp gene expression and cyst formation. Microarray analysis identified up-regulation of cwp and specific vsp genes by Topo II. We also found that the type II topoisomerase inhibitor etoposide has growth inhibition effect on Giardia. Addition of etoposide significantly decreased the levels of cwp gene expression and cyst formation. Our results suggest that Topo II has been functionally conserved during evolution and that Topo II plays important roles in induction of the cwp genes, which is key to Giardia differentiation into cysts.


Subject(s)
DNA Topoisomerases, Type II/metabolism , Gene Expression Regulation , Giardia lamblia/enzymology , Giardia lamblia/genetics , Oocysts/enzymology , Protozoan Proteins/biosynthesis , Chromatin Immunoprecipitation , DNA Mutational Analysis , DNA Topoisomerases, Type II/genetics , Gene Expression Profiling , Giardia lamblia/growth & development , Humans , Microarray Analysis , Oocysts/growth & development , Promoter Regions, Genetic , Protein Binding
5.
J Biol Chem ; 285(42): 32213-26, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20699219

ABSTRACT

Giardia lamblia differentiates into infectious cysts to survive outside of the host. It is of interest to identify factors involved in up-regulation of cyst wall proteins (CWPs) during this differentiation. Pax proteins are important regulators of development and cell differentiation in Drosophila and vertebrates. No member of this gene family has been reported to date in yeast, plants, or protozoan parasites. We have identified a pax-like gene (pax1) encoding a putative paired domain in the G. lamblia genome. Epitope-tagged Pax1 localized to nuclei during both vegetative growth and encystation. Recombinant Pax1 specifically bound to the AT-rich initiator elements of the encystation-induced cwp1 to -3 and myb2 genes. Interestingly, overexpression of Pax1 increased cwp1 to -3 and myb2 gene expression and cyst formation. Deletion of the C-terminal paired domain or mutation of the basic amino acids of the paired domain resulted in a decrease of the transactivation function of Pax1. Our results indicate that the Pax family has been conserved during evolution, and Pax1 could up-regulate the key encystation-induced genes to regulate differentiation of the protozoan eukaryote, G. lamblia.


Subject(s)
Giardia lamblia/cytology , Giardia lamblia/genetics , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Transcriptional Activation , Amino Acid Sequence , Animals , Gene Expression Regulation , Giardia lamblia/metabolism , Giardia lamblia/pathogenicity , Humans , Microarray Analysis , Molecular Sequence Data , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...