Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(33): 22395-22400, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28805860

ABSTRACT

We report a facile, fast, and one-step approach to prepare N-doped graphene quantum dots (GQDs) using pulsed laser ablation with diethylenetriamine (DETA). The synthesized N-doped GQDs with an average size of about 3.4 nm and an N/C atomic ratio of 26% have been demonstrated. Compared to pristine GQDs, the N-doped GQDs emit enhanced photoluminescence (PL) with a factor as high as 66, originated from the enhanced densities of pyridinic and graphitic N. The temperature-dependent PL of the N-doped GQDs was studied from cryogenic to room temperature. An anomalous temperature dependence of PL intensity was observed for the N-doped GQDs, which was ascribed to a carrier transfer mechanism from a dopant-induced state to the quantum-dot emitting state.

2.
Nanotechnology ; 28(37): 375702, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28682300

ABSTRACT

Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in 'green photonics'. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing 'green' LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for 'green' LSCs by further enhancing solid-state PL-QYs.

3.
Phys Chem Chem Phys ; 18(32): 22599-605, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27476476

ABSTRACT

A one-step synthesis of graphene quantum dots (GQDs) has been implemented using pulsed laser ablation (PLA) with carboxyl-functionalized multiwalled carbon nanotubes (MWCNTs). The synthesized GQDs with an average size smaller than 3 nm were obtained by the fragmentation of MWCNTs via oxidative cutting. The GQDs can generate tunable photoluminescence (PL) ranging from green to blue by controlling the PLA time. The PL spectrum (decay time) of the green GQDs remains unchanged under different excitation energies (emission energies), while that of the blue GQDs correlates with the excitation energy (emission energy). On the basis of the pH and temperature dependence of PL, we suggest that the localized intrinsic states associated with the sp(2) nanodomains and delocalized extrinsic states embedded on the GQD surface are responsible for blue and green emission in GQDs, respectively.

4.
Nanotechnology ; 27(34): 345701, 2016 Aug 26.
Article in English | MEDLINE | ID: mdl-27405350

ABSTRACT

Luminescent gold nanoclusters (AuNCs) with good biocompatibility have gained much attention in bio-photonics. In addition, they also exhibit a unique photo-physical property, namely thermally activated delayed fluorescence (TADF), by which both singlet and triplet excitons can be harvested. The combination of their non-toxic material property and unique TADF behavior makes AuNCs biocompatible nano-emitters for bio-related light-emitting devices. Unfortunately, the TADF emission is quenched when colloidal AuNCs are transferred to solid states under ambient environment. Here, a facile, low-cost and effective method was used to generate efficient and stable TADF emissions from solid AuNCs under ambient environment using polyvinyl alcohol as a solid matrix. To unravel the underlying mechanism, temperature-dependent static and transient photoluminescence measurements were performed and we found that two factors are crucial for solid TADF emission: small energy splitting between singlet and triplet states and the stabilization of the triplet states. Solid TADF films were also deposited on the flexible plastic substrate with patterned structures, thus mitigating the waveguide-mode losses. In addition, we also demonstrated that warm white light can be generated based on a co-doped single emissive layer, consisting of non-toxic, solution-processed TADF AuNCs and fluorescent carbon dots under UV excitation.

5.
Sci Rep ; 6: 19991, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26822337

ABSTRACT

Solution-processed, non-toxic carbon dots (CDs) have attracted much attention due to their unique photoluminescence (PL) properties. They are promising emissive layers for flexible light-emitting devices. To this end, the CDs in pristine aqueous solutions need to be transferred to form solid-state thin films without sacrificing their original PL characteristics. Unfortunately, solid-state PL quenching induced by extra non-radiative (NR) energy transfer among CDs would significantly hinder their practical applications in optoelectronics. Here, a facile, low-cost and effective method has been utilized to fabricate high-performance CD/polymer light-emitting flexible films with submicron-structured patterns. The patterned polymers can serve as a solid matrix to disperse and passivate CDs, thus achieving high internal quantum yields of 61%. In addition, they can act as an out-coupler to mitigate the waveguide-mode losses, approximately doubling the external light-extraction efficiency. Such CD/polymer composites also exhibit good photo-stability, and thus can be used as eco-friendly, low-cost phosphors for solid-state lighting.

6.
Nanoscale ; 7(6): 2708-15, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25583066

ABSTRACT

A new one-step method for the preparation of graphene oxide (GO) nanostructures has been developed by pulsed laser ablation in GO solution. The formation of different shapes of GO nanostructures, such as ribbons, nanoflakes (including nano-squares, nano-rectangles, nano-triangles, nano-hexagons, and nano-disks) and quantum dots, has been demonstrated by scanning electron microscopy and transmission electron microscopy. Photoreduction for the GO occurred during irradiation by the pulsed laser. The GO quantum dots exhibit a blue photoluminescence, originating from recombination of the localized carriers in the zigzag-edge states.

7.
Opt Lett ; 38(15): 2897-9, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23903173

ABSTRACT

We report the distance-dependent energy transfer from an InGaN quantum well to graphene oxide (GO) by time-resolved photoluminescence (PL). A pronounced shortening of the PL decay time in the InGaN quantum well was observed when interacting with GO. The nature of the energy-transfer process has been analyzed, and we find the energy-transfer efficiency depends on the 1/d² separation distance, which is dominated by the layer-to-layer dipole coupling.


Subject(s)
Energy Transfer , Gallium/chemistry , Graphite/chemistry , Indium/chemistry , Luminescent Measurements , Nitrogen Compounds/chemistry , Oxides/chemistry
8.
Phys Chem Chem Phys ; 15(10): 3618-22, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23381102

ABSTRACT

Nonradiative energy transfer from an InGaN quantum well to Ag nanoparticles is unambiguously demonstrated by the time-resolved photoluminescence. The distance dependence of the energy transfer rate is found to be proportional to 1/d(3), in good agreement with the prediction of the dipole interaction calculated from the Joule losses in acceptors. The maximum energy-transfer efficiency of this energy transfer system can be as high as 83%.


Subject(s)
Gallium/chemistry , Indium/chemistry , Metal Nanoparticles/chemistry , Quantum Dots , Silver/chemistry , Energy Transfer
9.
Opt Express ; 19 Suppl 2: A194-200, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21445220

ABSTRACT

We present the first observation of resonance energy transfer from InGaN quantum wells to Au nanoclusters via optical waveguiding. Steady-state and time-resolved photoluminescence measurements provide conclusive evidence of resonance energy transfer and obtain an optimum transfer efficiency of ~72%. A set of rate equations is successfully used to model the kinetics of resonance energy transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...