Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(49): 31267-31277, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33229585

ABSTRACT

Mushroom-forming fungi in the order Agaricales represent an independent origin of bioluminescence in the tree of life; yet the diversity, evolutionary history, and timing of the origin of fungal luciferases remain elusive. We sequenced the genomes and transcriptomes of five bonnet mushroom species (Mycena spp.), a diverse lineage comprising the majority of bioluminescent fungi. Two species with haploid genome assemblies ∼150 Mb are among the largest in Agaricales, and we found that a variety of repeats between Mycena species were differentially mediated by DNA methylation. We show that bioluminescence evolved in the last common ancestor of mycenoid and the marasmioid clade of Agaricales and was maintained through at least 160 million years of evolution. Analyses of synteny across genomes of bioluminescent species resolved how the luciferase cluster was derived by duplication and translocation, frequently rearranged and lost in most Mycena species, but conserved in the Armillaria lineage. Luciferase cluster members were coexpressed across developmental stages, with the highest expression in fruiting body caps and stipes, suggesting fruiting-related adaptive functions. Our results contribute to understanding a de novo origin of bioluminescence and the corresponding gene cluster in a diverse group of enigmatic fungal species.


Subject(s)
Agaricales/genetics , Evolution, Molecular , Fruiting Bodies, Fungal/genetics , Luminescence , Agaricales/chemistry , Base Sequence , Fruiting Bodies, Fungal/chemistry , Genome, Fungal/genetics , Luciferases/genetics , Phylogeny
2.
Genome Biol Evol ; 11(10): 2774-2788, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31418013

ABSTRACT

Comparative genomics of fungal mitochondrial genomes (mitogenomes) have revealed a remarkable pattern of rearrangement between and within major phyla owing to horizontal gene transfer and recombination. The role of recombination was exemplified at a finer evolutionary time scale in basidiomycetes group of fungi as they display a diversity of mitochondrial DNA inheritance patterns. Here, we assembled mitogenomes of six species from the Hymenochaetales order of basidiomycetes and examined 59 mitogenomes from 2 genetic lineages of Phellinus noxius. Gene order is largely collinear, while intergene regions are major determinants of mitogenome size variation. Substantial sequence divergence was found in shared introns consistent with high horizontal gene transfer frequency observed in yeasts, but we also identified a rare case where an intron was retained in five species since speciation. In contrast to the hyperdiversity observed in nuclear genomes of Phellinus noxius, mitogenomes' intraspecific polymorphisms at protein-coding sequences are extremely low. Phylogeny network based on introns revealed turnover as well as exchange of introns between two lineages. Strikingly, some strains harbor a mosaic origin of introns from both lineages. Analysis of intergenic sequence indicated substantial differences between and within lineages, and an expansion may be ongoing as a result of exchange between distal intergenes. These findings suggest that the evolution in mitochondrial DNAs is usually lineage specific but chimeric mitotypes are frequently observed, thus capturing the possible evolutionary processes shaping mitogenomes in a basidiomycete. The large mitogenome sizes reported in various basidiomycetes appear to be a result of interspecific reshuffling of intergenes.


Subject(s)
Basidiomycota/genetics , Evolution, Molecular , Genome, Fungal , Genome, Mitochondrial , Genome Size , Introns , Molecular Sequence Annotation , Polymorphism, Genetic , Synteny
3.
Nat Plants ; 5(1): 63-73, 2019 01.
Article in English | MEDLINE | ID: mdl-30626928

ABSTRACT

We present reference-quality genome assembly and annotation for the stout camphor tree (Cinnamomum kanehirae (Laurales, Lauraceae)), the first sequenced member of the Magnoliidae comprising four orders (Laurales, Magnoliales, Canellales and Piperales) and over 9,000 species. Phylogenomic analysis of 13 representative seed plant genomes indicates that magnoliid and eudicot lineages share more recent common ancestry than monocots. Two whole-genome duplication events were inferred within the magnoliid lineage: one before divergence of Laurales and Magnoliales and the other within the Lauraceae. Small-scale segmental duplications and tandem duplications also contributed to innovation in the evolutionary history of Cinnamomum. For example, expansion of the terpenoid synthase gene subfamilies within the Laurales spawned the diversity of Cinnamomum monoterpenes and sesquiterpenes.


Subject(s)
Cinnamomum camphora/genetics , Evolution, Molecular , Genome, Plant , Phylogeny , Plant Proteins/genetics , Alkyl and Aryl Transferases/genetics , DNA Transposable Elements , Magnoliopsida/genetics , Molecular Sequence Annotation , Multigene Family , Polymorphism, Single Nucleotide , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...