Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 905: 167215, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37734602

ABSTRACT

Polystyrene microplastics (PSMPs) are some of the most common microplastic components, and the resulting pollution has become a global problem. Extensive studies have been conducted on the toxic effects of PSMPs on the heart, lungs, liver, kidneys, nerves, intestines and other tissues. However, the impact of PSMPs on vascular toxicity is poorly understood at present. The aim of this study was to reveal the vascular toxicity of microplastics (MPs). Patients were assigned to a calcification group (25 patients) or a non-calcification group (22 patients) based on the presence or absence of calcification in the thoracic aorta wall. We detected 7 polymer types in human feces. Patients with vascular calcification (VC) had higher levels of total MPs, polypropylene (PP) and polystyrene (PS) in feces than patients without VC. The thoracic aortic calcification score was significantly positively correlated with the total MP abundance (Spearman r = 0.8109, p < 0.0001), PP (Spearman r = 0.7211, p = 0.0160) and PS (Spearman r = 0.6523, p = 0.0471) in feces. We then explored the effects of PSMP exposure on normal and vitamin D3 + nicotine (VDN)-treated rats. PSMP exposure induced mild VC in normal rats and aggravated VC in VDN-treated rats. PSMP exposure disturbed the gut microbiota, causing Proteobacteria and Escherichia_Shigella to be the dominant phylum and genus, respectively. It also induced intestinal inflammatory responses in normal rats, aggravated intestinal inflammation in VDN-treated rats, impaired the intestinal mucosal barrier, and increased intestinal permeability. This study provides a theoretical basis for the risk assessment of MP-induced cardiovascular disease.


Subject(s)
Microplastics , Vascular Calcification , Rats , Humans , Animals , Plastics , Polystyrenes/toxicity , Kidney , Cholecalciferol
2.
Int J Cardiol Heart Vasc ; 45: 101190, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36941997

ABSTRACT

Background: Percutaneous mitral valve repair (PMVR) has evolved to be a standard procedure in suitable patients with mitral regurgitation (MR) not accessible for open surgery. Here, we analyzed the influence of the number and positioning of the clips implanted during the procedure on MR reduction analyzing also sub-collectives of functional and degenerative MR (DMR). Results: We included 410 patients with severe MR undergoing PMVR using the MitraClip® System. MR and reduction of MR were analyzed by TEE at the beginning and at the end of the PMVR procedure. To specify the clip localization, we sub-divided segment 2 into 3 sub-segments using the segmental classification of the mitral valve. Results: We found an enhanced reduction of MR predominantly in DMR patients who received more than one clip. Implantation of only one clip led to a higher MR reduction in patients with functional MR (FMR) in comparison to patients with DMR. No significant differences concerning pressure gradients could be observed in degenerative MR patients regardless of the number of clips implanted. A deterioration of half a grade of the achieved MR reduction was observed 6 months post-PMVR independent of the number of implanted clips with a better stability in FMR patients, who got 3 clips compared to patients with only one clip. Conclusions: In patients with FMR, after 6 months the reduction of MR was more stable with an increased number of implanted clips, which suggests that this specific patient collective may benefit from a higher number of clips.

3.
J Immunol ; 208(7): 1729-1741, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35277420

ABSTRACT

Recent evidence suggests interaction of platelets with dendritic cells (DCs), while the molecular mechanisms mediating this heterotypic cell cross-talk are largely unknown. We evaluated the role of integrin Mac-1 (αMß2, CD11b/CD18) on DCs as a counterreceptor for platelet glycoprotein (GP) Ibα. In a dynamic coincubation model, we observed interaction of human platelets with monocyte-derived DCs, but also that platelet activation induced a sharp increase in heterotypic cell binding. Inhibition of CD11b or GPIbα led to significant reduction of DC adhesion to platelets in vitro independent of GPIIbIIIa, which we confirmed using platelets from Glanzmann thrombasthenia patients and transgenic mouse lines on C57BL/6 background (GPIbα-/-, IL4R-GPIbα-tg, and muMac1 mice). In vivo, inhibition or genetic deletion of CD11b and GPIbα induced a significant reduction of platelet-mediated DC adhesion to the injured arterial wall. Interestingly, only intravascular antiCD11b inhibited DC recruitment, suggesting a dynamic DC-platelet interaction. Indeed, we could show that activated platelets induced CD11b upregulation on Mg2+-preactivated DCs, which was related to protein kinase B (Akt) and dependent on P-selectin and P-selectin glycoprotein ligand 1. Importantly, specific pharmacological targeting of the GPIbα-Mac-1 interaction site blocked DC-platelet interaction in vitro and in vivo. These results demonstrate that cross-talk of platelets with DCs is mediated by GPIbα and Mac-1, which is upregulated on DCs by activated platelets in a P-selectin glycoprotein ligand 1-dependent manner.


Subject(s)
Blood Platelets , CD18 Antigens , Animals , Blood Platelets/physiology , CD18 Antigens/metabolism , Cell Adhesion , Cell Communication , Dendritic Cells/metabolism , Humans , Mice , Mice, Inbred C57BL , Platelet Glycoprotein GPIb-IX Complex/metabolism
4.
iScience ; 25(1): 103677, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35036868

ABSTRACT

Atherosclerosis is studied in models with dysfunctional lipid homeostasis-predominantly the ApoE-/- mouse. The role of antigen-presenting cells (APCs) for lipid homeostasis is not clear. Using a LacZ reporter mouse, we showed that CD11c+ cells were enriched in aortae of ApoE-/- mice. Systemic long-term depletion of CD11c+ cells in ApoE-/- mice resulted in significantly increased plaque formation associated with reduced serum ApoE levels. In CD11ccre+ApoEfl/fl and Albumincre+ApoEfl/fl mice, we could show that ≈70% of ApoE is liver-derived and ≈25% originates from CD11c+ cells associated with significantly increased atherosclerotic plaque burden in both strains. Exposure to acLDL promoted cholesterol efflux from CD11c+ cells and cell-specific deletion of ApoE resulted in increased inflammation reflected by increased IL-1ß serum levels. Our results determined for the first time the level of ApoE originating from CD11c+ cells and demonstrated that CD11c+ cells ameliorate atherosclerosis by the secretion of ApoE.

5.
Front Robot AI ; 8: 579993, 2021.
Article in English | MEDLINE | ID: mdl-34095237

ABSTRACT

Parent-child story time is an important ritual of contemporary parenting. Recently, robots with artificial intelligence (AI) have become common. Parental acceptance of children's storytelling robots, however, has received scant attention. To address this, we conducted a qualitative study with 18 parents using the research technique design fiction. Overall, parents held mixed, though generally positive, attitudes toward children's storytelling robots. In their estimation, these robots would outperform screen-based technologies for children's story time. However, the robots' potential to adapt and to express emotion caused some parents to feel ambivalent about the robots, which might hinder their adoption. We found three predictors of parental acceptance of these robots: context of use, perceived agency, and perceived intelligence. Parents' speculation revealed an uncanny valley of AI: a nonlinear relation between the human likeness of the artificial agent's mind and affinity for the agent. Finally, we consider the implications of children's storytelling robots, including how they could enhance equity in children's access to education, and propose directions for research on their design to benefit family well-being.

6.
Biol Chem ; 401(3): 367-376, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31318684

ABSTRACT

The objective of this study was to reveal a novel mechanism underlying the progression of atherosclerosis (AS) associated with endothelial cells (ECs) and neutrophils. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were used to observe the morphology and particle size of isolated exosomes. Western blotting was applied to examine exosomal markers, while the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The production of inflammatory cytokines and reactive oxygen species (ROS) was determined by an enzyme-linked immunosorbent assay (ELISA) and a dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. Circulating neutrophil extracellular traps (NETs) were represented by myeloperoxidase (MPO)-DNA complexes. NETs formation was assessed using immunofluorescence microscopy. Atherosclerotic lesion development was measured by Oil Red O (ORO) staining. In the results, MALAT1 expression was increased in exosomes extracted from oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs). When co-cultured with human neutrophils, exosomes derived from ox-LDL-treated HUVECs were revealed to promote NETs formation, which was mediated by exosomal MALAT1. Furthermore, ox-LDL-treated HUVECs-derived exosomes were demonstrated to trigger hyperlipidemia, inflammatory response and NETs release in a mouse model of AS. In conclusion, exosomal MALAT1 derived from ox-LDL-treated ECs initiated NETs formation, which in turn deteriorated AS.


Subject(s)
Atherosclerosis/metabolism , Exosomes/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Lipoproteins, LDL/metabolism , Neutrophils/metabolism , RNA, Long Noncoding/metabolism , Atherosclerosis/pathology , Cells, Cultured , Exosomes/metabolism , Humans , Neutrophils/pathology , RNA, Long Noncoding/genetics
7.
J Cell Biochem ; 120(4): 5612-5619, 2019 04.
Article in English | MEDLINE | ID: mdl-30302814

ABSTRACT

Platelet-neutrophil interaction is well known for its role in inflammatory diseases; however, its biological role in atherosclerosis (AS) progression remains unclear. Human peripheral blood neutrophils were obtained to compare toll-like receptor 4 (TLR4), tumor necrosis factor α (TNF-α), interleukin (IL)-1ß and myeloid-related proteins 8/14 (Mrp8/14) levels in 22 AS patients with those in 18 healthy controls using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Meanwhile, mouse marrow neutrophils subjected to different treatment were collected for the ELISA assay, cell apoptosis, and Western blot analysis. Normal diet or high-fat diet ApoE-/- mice with or without administration of Mrp8/14 antagonist paquinimod were used for plasma collection to measure total cholesterol, triglycerides, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol, TNF-α, IL-1ß, Mrp8/14, TLR4, and nuclear factor (NF)-κB p65 levels. The results showed that Mrp8/14 and TLR4-mediated inflammatory pathway was activated in neutrophils of AS patients. In vitro experiments demonstrated that platelet-neutrophil interaction promoted the Mrp8/14 release and inhibited neutrophil apoptosis via P-selectin. Furthermore, platelet-neutrophil interaction upregulated TLR4/myeloid differentiation factor 88/NF-κB pathway. Conversely, Mrp8/14/TLR4/NF-κB interference alleviated AS progression. In conclusion, Mrp8/14/TLR4/NF-κB activated by platelet-neutrophil interaction is an important inflammatory signaling pathway for AS pathogenesis.


Subject(s)
Atherosclerosis/metabolism , Blood Platelets/metabolism , NF-kappa B/metabolism , Neutrophils/metabolism , Toll-Like Receptor 4/metabolism , Vasculitis/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Blood Platelets/pathology , Calgranulin A/genetics , Calgranulin A/metabolism , Female , Humans , Male , Mice , Mice, Knockout, ApoE , NF-kappa B/genetics , Neutrophils/pathology , Toll-Like Receptor 4/genetics , Vasculitis/genetics , Vasculitis/pathology
8.
Sci Rep ; 7: 46307, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28397812

ABSTRACT

Atrial Fibrillation (AF) is common in the elderly and Sestrins (Sesns) have been suggested to prevent age-related pathologies. The aim of this study was to investigate the effects of Sesns in AF. Clinical data were collected and a small sample of atrial appendage and atrium was obtained from patients undergoing valve repairment. The expression of Sesn1, Sesn2, and Sesn3 was significantly higher in patients with permanent atrial fibrillation (PmAF) than that in sinus rhythm (SR), and further greater in the left atrium than the right in PmAF patients. Superoxide anion and malondialdehyde were enhanced and positively correlated to the protein expression of Sesn1/2/3. Reactive oxygen species (ROS) production and Ca2+ overload were significantly decreased and cell survival was enhanced by overexpression of Sesns 1/2/3 in cultured HL-1 cells. Conversely, knockdown of Sesn1/2/3 resulted in significantly increased ROS and Ca2+ overload. In addition, the overexpression of Sesn1/2 significantly reduced the proliferation of fibroblasts, as well as decreased the protein expression of collagen and fibronectin1 in angiotensin II-stimulated cardiac fibroblasts. Our study demonstrated for the first time that Sesns expression is significantly up-regulated in AF, which therefore may protect hearts against oxidative damage and atrial fibrosis.


Subject(s)
Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Gene Expression Regulation , Heart Atria/metabolism , Heart Atria/pathology , Oxidative Stress , Angiotensin II/metabolism , Atrial Fibrillation/etiology , Atrial Fibrillation/physiopathology , Biomarkers , Calcium/metabolism , Cell Line , Cell Survival/genetics , Collagen/metabolism , Comorbidity , Female , Fibroblasts/metabolism , Fibrosis , Gene Knockdown Techniques , Heart Atria/physiopathology , Histocytochemistry , Humans , Male , Middle Aged , Reactive Oxygen Species/metabolism
9.
Cardiovasc Ther ; 33(4): 200-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25973665

ABSTRACT

INTRODUCTION: Atrial fibrillation (AF) is the most common cardiac arrhythmia. However, the current drug interference of antiarrhythmia has limited efficacy and off-target effects. Accumulating evidence has implicated a potential role of nitration stress in the pathogenesis of AF. The aim of the study was to determine whether TPEN provided antinitration effects on atrial myocytes during AF, especially under circumstances of nitration stress. METHODS: We utilized a rapid paced HL-1 cells model for AF. The changes of electrophysiological characteristics and structure of paced HL-1 cells were determined by a patch clamp and a TEM method. The effects of TPEN on pacing and ONOO(-) pretreated HL-1 cells were examined using MTT assay, TUNEL technique, confocal microscope experiment, and Western blot analysis. RESULTS: The results revealed that ONOO(-) reduced the viability of HL-1 cells in a dose-dependent manner, and 1 µmol/L TPEN significantly ameliorated the damage caused by 50 µmol/L ONOO(-) (P < 0.05). Pacing and/or ONOO(-) -induced marked shortening of APD, myolysis, and nuclear condensation. TPEN inhibited the Ca(2+) overload induced by rapid pacing (P < 0.05) and ONOO(-) stimulation (P < 0.05). The application of TPEN significantly prevented the protein nitration caused by pacing or pacing plus ONOO(-) (P < 0.05). Additionally, pacing in combination with ONOO(-) treatment led to increase in apoptosis in HL-1 cells (P < 0.01), which could be reduced by pretreatment with TPEN (P < 0.05). CONCLUSIONS: TPEN prevents Ca(2+) overload and nitration stress in HL-1 atrial myocytes during rapid pacing and circumstances of nitration stress.


Subject(s)
Atrial Fibrillation/drug therapy , Calcium/metabolism , Cardiac Pacing, Artificial , Ethylamines/pharmacology , Myocytes, Cardiac/drug effects , Peroxynitrous Acid/toxicity , Pyridines/pharmacology , Reactive Nitrogen Species/metabolism , Animals , Apoptosis/drug effects , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Cell Line , Cell Survival/drug effects , Cytoprotection , Dose-Response Relationship, Drug , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Signal Transduction/drug effects , Tyrosine/analogs & derivatives , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...