Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
J Ethnopharmacol ; 334: 118570, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002824

ABSTRACT

BACKGROUND: The invasion of luminal antigens and an aberrant immune response resulting from a disrupted physical epithelial barrier are the key characteristics of ulcerative colitis (UC). The restoration of damaged epithelial function is crucial for maintaining mucosal homeostasis and disease quiescence. Current therapies for UC primarily focus on suppressing inflammation. However, most patients fail to respond to therapy or develop secondary resistance over time, emphasizing the need to develop novel therapeutic targets for UC. Our study aimed to identify the potential targets of a novel modified herbal formula from the Zhen Wu Decoction, namely CDD-2103, which has demonstrated promising efficacy in treating chronic colitis. METHODS: The effect of CDD-2103 on epithelial barrier function was examined using in vitro and ex vivo models of tissue injury, as well as a chronic colitis C57BL/6 mouse model. Transcriptomic analysis was employed to profile gene expression changes in colonic tissues following treatment with CDD-2103. RESULTS: Our in vivo experiments demonstrated that CDD-2103 dose-dependently reduced disease severity in mice with chronic colitis. The efficacy of CDD-2103 was mediated by a reduction in goblet cell loss and the enhancement of tight junction protein integrity. Mechanistically, CDD-2103 suppressed epithelial cell apoptosis and tight junction protein breakdown by activating the soluble guanynyl cyclase (sGC)-mediated cyclic guanosine monophosphate (cGMP)/PKG signaling cascade. Molecular docking analysis revealed strong sGC ligand recognition by the CDD-2103-derived molecules, warranting further investigation. CONCLUSION: Our study revealed a novel formulation CDD-2103 that restores intestinal barrier function through the activation of sGC-regulated cGMP/PKG signaling. Furthermore, our findings suggest that targeting sGC can be an effective approach for promoting mucosal healing in the management of UC.

2.
Comput Biol Med ; 178: 108775, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941901

ABSTRACT

BACKGROUND: CDD-2103 is an herbal prescription used to treat ulcerative colitis (UC). This study aimed to uncover its mechanism by integrating metabolomics and serum-feces pharmacochemistry-based network pharmacology. METHODS: A DSS-induced chronic colitis mice model was used to evaluate the anti-colitis effect of CDD-2103. Serum and feces metabolomics were conducted to identify differential metabolites and pathways. In the serum-feces pharmacochemistry study, biological samples were collected from rats treated with CDD-2103. Then, network pharmacology was utilized to predict the targets of the identified compounds. Critical genes were extracted through the above-integrated analysis. The interactions between targets, CDD-2103, and its compounds were validated through molecular docking, immunoblotting, and enzyme activity assays. RESULTS: CDD-2103 alleviated ulcerous symptoms and colonic injuries in colitis mice. Metabolomics study identified differential metabolites associated with tryptophan, glycerophospholipid, and linoleic acid metabolisms. The serum-feces pharmacochemistry study revealed twenty-three compounds, which were subjected to network pharmacology analysis. Integration of these results identified three key targets (AHR, PLA2, and PTGS2). Molecular docking showed strong affinities between the compounds and targets. PTGS2 was identified as a hub gene targeted by most CDD-2103 compounds. Immunoblotting and enzyme activity assays provided further evidence that CDD-2103 alleviates UC, potentially through its inhibitory effect on cyclooxygenase-2 (COX-2, encoded by PTGS2), with alkaloids and curcuminoids speculated as crucial anti-inflammatory compounds. CONCLUSION: This integrated strategy reveals the mechanism of CDD-2103 and provides insights for developing herbal medicine-based therapies for UC.

3.
Phytomedicine ; 129: 155694, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733904

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is associated with intestinal macrophage infiltration due to disruption of the mucosal barrier and bacterial invasion. Therefore, it is crucial to identify therapeutic agents capable of attenuating the macrophage-induced inflammatory response to preserve mucosal homeostasis and immune tolerance. The modified Zhenwu decoction (CDD-2103) is a novel herbal formulation developed based on the principles of Traditional Chinese medicine. To date, there are no clinically approved herbal formulations for UC with a well-known mechanism of action on macrophages. PURPOSE: The objective of this study was to systematically investigate the inhibitory effect of the active fraction of CDD-2103 in a mouse model of chronic colitis and delineate the mechanisms underlying its inhibitory action. METHODS: CDD-2103 was extracted into four fractions using organic solvents with increasing polarity. A chronic 49-day dextran sulfate sodium (DSS)-induced colitis mice model, closely resembling human clinical conditions, was used to examine the effect of CDD-2103 on chronic colitis. To confirm the effect of CDD-2103 on macrophages in this chronic colitis model, adoptive macrophage transfer and CCL2 supplementation were conducted. The mechanisms of action of CDD-2103 were further elucidated utilizing bone marrow-derived macrophages (BMDMs). Transcriptome analysis was conducted to gain insights into the underlying mechanism of action of CDD-2103 in BMDMs. RESULTS: Our in vitro and in vivo findings demonstrated that the ethanol-enriched fraction of CDD-2103 exhibited significant anti-inflammatory effects, leading to the suppression of colitis severity. This effect was associated with diminished accumulation of colonic macrophages in the lamina propria of CDD-2103-intervened colitis mice. Specifically, CDD-2103 inhibited CCR2/L2-mediated proinflammatory macrophage infiltration into the colon without affecting macrophage proliferation. Mechanistically, CDD-2103 inhibited Fyn expression-mediated p38 MAPK activation and subsequently suppressed CCR2 expression in BMDMs. CONCLUSIONS: Collectively, our study supports the potential use of CDD-2103 to limit macrophage infiltration, thereby reducing inflammation during UC treatment. CDD-2103 and the components in the ethanolic fraction are promising candidates for the development of novel drugs for UC management. Additionally, our study underscores Fyn-mediated CCR2 expression as a potential therapeutic target for the management of UC.


Subject(s)
Dextran Sulfate , Disease Models, Animal , Drugs, Chinese Herbal , Macrophages , Mice, Inbred C57BL , Receptors, CCR2 , p38 Mitogen-Activated Protein Kinases , Animals , Male , Mice , Chronic Disease , Colitis/drug therapy , Colitis/chemically induced , Colitis, Ulcerative/drug therapy , Drugs, Chinese Herbal/pharmacology , Macrophages/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Receptors, CCR2/metabolism , Signal Transduction/drug effects
4.
J Adv Res ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38677546

ABSTRACT

INTRODUCTION: Ulcerative colitis (UC) is a chronic inflammatory disease characterized by loss of immune tolerance to luminal antigens and progressive intestinal tissue injury. Thus, the re-establishment of immune tolerance is crucial for suppressing aberrant immune responses and UC progression. OBJECTIVES: This study aimed to investigate the mechanisms underlying the action of CDD-2103 and its bioactive compounds in mediating immune regulation in mouse models of colitis. METHODS: Two experimental colitis models, chronic 2,4,6-trinitrobenzene sulfonic acid (TNBS)- and T-cell transfer-induced Rag1-/- mice, were used to determine the effects of CDD-2103 on colitis progression. Single-cell transcriptome analysis was used to profile the immune landscape and its interactions after CDD-2103 treatment. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the major components interacting with lymphoid cells. A primary cell co-culture system was used to confirm the effects of bioactive component. RESULTS: CDD-2103 dose-dependently suppresses the progression of colitis induced by chemicals or T cell transplantation in Rag1-/- mice. The effect of CDD-2103 is primarily attributable to an increase in the de novo generation of regulatory T cells (Tregs) in the lamina propria (LP). Single-cell transcriptomic analysis revealed that CDD-2103 treatment increased the number of tolerogenic dendritic cells (DCs). Mechanistically, CDD-2103 promoted tolerogenic DCs accumulation and function by upregulating several genes in the electron transport chain related to oxidative phosphorylation, leading to increased differentiation of Tregs. Further LC-MS analysis identified several compounds in CDD-2103, particularly those distributed within the mesenteric lymph nodes of mice. Subsequent studies revealed that palmatine and berberine promoted tolerogenic bone marrow-derived dendritic cells (BMDC)-mediated Treg differentiation. CONCLUSION: Overall, our study demonstrated that the clinically beneficial effect of CDD-2103 in the treatment of UC is based on the induction of immune tolerance. In addition, this study supports berberine and palmatine as potential chemical entities in CDD-2103 that modulate immune tolerance.

5.
Food Chem Toxicol ; 185: 114476, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301993

ABSTRACT

Indigo naturalis (IN) is a dried powder derived from plants such as Baphicacanthus cusia (Neeks) Bremek., Polygonum tinctorium Ait. and Isatis indigotica Fork. It has a historical application as a dye in ancient India, Egypt, Africa and China. Over time, it has been introduced to China and Japan for treatment of various ailments including hemoptysis, epistaxis, chest discomfort, and aphtha. Clinical and pre-clinical studies have widely demonstrated its promising effects on autoimmune diseases like psoriasis and Ulcerative colitis (UC). Despite the documented efficacy of IN in UC patients, concerns have been raised on the development of adverse effects with long term consumption, prompting a closer examination of its safety and tolerability in these contexts. This review aims to comprehensively assess the efficacy of IN in both clinical and pre-clinical settings, with a detailed exploration of the mechanisms of action involved. Additionally, it summarizes the observed potential toxicity of IN in animal and human settings was summarized. This review will deepen our understanding on the beneficial and detrimental effects of IN in UC, providing valuable insights for its future application in patients with this condition.


Subject(s)
Colitis, Ulcerative , Drugs, Chinese Herbal , Psoriasis , Animals , Humans , Indigo Carmine/therapeutic use , Colitis, Ulcerative/drug therapy , Drugs, Chinese Herbal/therapeutic use , Psoriasis/chemically induced , China
6.
Food Chem ; 439: 138085, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38039612

ABSTRACT

Chaenomeles speciosa (Sweet) Nakai fruit is a good source of phenolics with many health benefits. In this work, the enrichment of C. speciosa fruit total phenolics (CSFTP) using macroporous resins was studied. NKA-Ⅱ resin was selected for enriching CSFTP due to its highest adsorption/desorption quantity. Adsorption characteristics of CSFTP on NKA-Ⅱ resin exhibited a good fit with the Langmuir isotherm model and pseudo-second order kinetics model. This adsorption was spontaneous, exothermic, and entropy-decreasing through a physisorption mechanism. The breakthrough-elution curves were studied to optimize CSFTP enrichment conditions. One-step enrichment increased CSFTP content in the extracts from 26.51 % to 78.63 %, with a recovery of 81.03 %. A UPLC-QqQ-MS/MS method in multiple reaction monitoring (MRM) mode was established and validated for the simultaneous quantification of seven phenolic compounds. This study demonstrates the feasibility of industrial enrichment of CSFTP using NKA-Ⅱ resin and proposes a reliable method for quality control of CSFTP-rich products.


Subject(s)
Plant Extracts , Rosaceae , Tandem Mass Spectrometry , Adsorption , Fruit , Chromatography, High Pressure Liquid/methods , Phenols , Resins, Plant
7.
Nat Commun ; 14(1): 4986, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591886

ABSTRACT

The incidence of metabolic syndrome is significantly higher in patients with irritable bowel syndrome (IBS), but the mechanisms involved remain unclear. Gut microbiota is causatively linked with the development of both metabolic dysfunctions and gastrointestinal disorders, thus gut dysbiosis in IBS may contribute to the development of metabolic syndrome. Here, we show that human gut bacterium Ruminococcus gnavus-derived tryptamine and phenethylamine play a pathogenic role in gut dysbiosis-induced insulin resistance in type 2 diabetes (T2D) and IBS. We show levels of R. gnavus, tryptamine, and phenethylamine are positively associated with insulin resistance in T2D patients and IBS patients. Monoassociation of R. gnavus impairs insulin sensitivity and glucose control in germ-free mice. Mechanistically, treatment of R. gnavus-derived metabolites tryptamine and phenethylamine directly impair insulin signaling in major metabolic tissues of healthy mice and monkeys and this effect is mediated by the trace amine-associated receptor 1 (TAAR1)-extracellular signal-regulated kinase (ERK) signaling axis. Our findings suggest a causal role for tryptamine/phenethylamine-producers in the development of insulin resistance, provide molecular mechanisms for the increased prevalence of metabolic syndrome in IBS, and highlight the TAAR1 signaling axis as a potential therapeutic target for the management of metabolic syndrome induced by gut dysbiosis.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Insulin Resistance , Irritable Bowel Syndrome , Metabolic Syndrome , Humans , Animals , Mice , Dysbiosis , Phenethylamines/pharmacology , Tryptamines/pharmacology
8.
Chin Med ; 18(1): 87, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37468912

ABSTRACT

BACKGROUND: Dysregulation of gut microbiota-host bile acid (BA) co-metabolism is a critical pathogenic factor of diarrhea-predominant irritable bowel syndrome (IBS-D). Traditional Chinese Medicine (TCM), instructed by pattern differentiation, is effective in treating IBS-D, in which liver depression and spleen deficiency (LDSD) is the most prevalent pattern. Still, it is unclear the linkage between the LDSD pattern and the BA metabolic phenotype. PURPOSE: This study aimed to uncover the biological basis of the LDSD pattern from the BA metabolic perspective. METHODS: Patients with IBS-D completed questionnaires regarding the irritable bowel severity scoring system (IBS-SSS), stool frequency, Stool Bristol scale, and Self-Rating Scales of mental health. Fasting blood and morning feces were collected to analyze the gut metagenome and BA-related indices/metabolites. RESULTS: IBS-D patients with LDSD had a higher incidence of BA overexcretion (41% vs. 23% non-LDSD) with significant elevations in fecal total BAs and serum BA precursor 7α-hydroxy-4-cholesten-3-one levels. Compared to controls or non-LDSD patients, LDSD patients had a featured fecal BA profile, with higher proportions of deoxycholic acid (DCA), 7-ketodeoxycholic acid, and lithocholic acid. It is consistent with the BA-metabolizing genomic changes in the LDSD gut microbiota characterized by overabundances of 7-dehydroxylating bacteria and BA-inducible genes (baiCD/E/H). The score of bowel symptoms (stool frequency and abdominal pain) showing greater severity in the LDSD pattern were positively correlated with bai-expressing bacterial abundances and fecal DCA levels separately. CONCLUSION: We clarified a differed BA metabolic phenotype in IBS patients with LDSD, which closely correlates with the severity of bowel symptoms. It demonstrates that gut microbiota and host co-metabolism of BAs would provide crucial insight into the biology of the LDSD pattern and its internal relationship with IBS progression.

9.
Front Immunol ; 14: 1292019, 2023.
Article in English | MEDLINE | ID: mdl-38288120

ABSTRACT

Background: Nectin-4 is a novel biomarker overexpressed in various types of cancer, including breast cancer, in which it has been associated with poor prognosis. Current literature suggests that nectin-4 has a role in cancer progression and may have prognostic and therapeutic implications. The present study aims to produce nectin-4-specific single-chain variable fragment (scFv) antibodies and evaluate their applications in breast cancer cell lines and clinical specimens. Methods: We generated recombinant nectin-4 ectodomain fragments as immunogens to immunize chickens and the chickens' immunoglobulin genes were amplified for construction of anti-nectin-4 scFv libraries using phage display. The binding capacities of the selected clones were evaluated with the recombinant nectin-4 fragments, breast cancer cell lines, and paraffin-embedded tissue sections using various laboratory approaches. The binding affinity and in silico docking profile were also characterized. Results: We have selected two clones (S21 and L4) from the libraries with superior binding capacity. S21 yielded higher signals when used as the primry antibody for western blot analysis and flow cytometry, whereas clone L4 generated cleaner and stronger signals in immunofluorescence and immunohistochemistry staining. In addition, both scFvs could diminish attachment-free cell aggregation of nectin-4-positive breast cancer cells. As results from ELISA indicated that L4 bound more efficiently to fixed nectin-4 ectodomain, molecular docking analysis was further performed and demonstrated that L4 possesses multiple polar contacts with nectin-4 and diversity in interacting residues. Conclusion: Overall, the nectin-4-specific scFvs could recognize nectin-4 expressed by breast cancer cells and have the merit of being further explored for potential diagnostic and therapeutic applications.


Subject(s)
Neoplasms , Single-Chain Antibodies , Animals , Single-Chain Antibodies/genetics , Nectins , Biomarkers, Tumor , Molecular Docking Simulation , Chickens
10.
Cells ; 11(14)2022 07 10.
Article in English | MEDLINE | ID: mdl-35883602

ABSTRACT

Spexin (SPX) is a novel peptide involved in glucose and lipid metabolism and suppresses hepatic total bile acid levels by inhibiting hepatic cholesterol 7α-hydroxylase 1 expression. As important mediators for glycolysis/gluconeogenesis and lipid metabolism, the effects of bile acids on SPX expression is yet to be understood. By using SMMC7721 and BEL-7402 cell lines, we screened the effects of bile acids and found that chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) can stimulate SPX gene transcription. Both CDCA and DCA were able to stimulate SPX mRNA expression in the liver but not colon and ileum in mice. In SMMC7721 and BEL-7402 cells, CDCA- and DCA-induced SPX promoter activity was mimicked by bile acid receptor FXR and TGR5 activation and suppressed by FXR and TGR5 silencing. Adenylate cyclase (AC)/cyclic adenosine monophosphate (cAMP) activators significantly increased SPX promoter activity whereas the inhibitors for AC/CAMP/protein kinase A (PKA) and mitogen-activated protein kinases (MAPK) pathway attenuated CDCA- and DCA-induced SPX transcription. Thus, CDCA and DCA stimulate SPX expression at the hepatic level through FXR and TGR5 mediated AC/cAMP/PKA and MAPK cascades.


Subject(s)
Bile Acids and Salts , Chenodeoxycholic Acid , Peptide Hormones , Animals , Bile Acids and Salts/metabolism , Bile Acids and Salts/pharmacology , Chenodeoxycholic Acid/pharmacology , Cholesterol 7-alpha-Hydroxylase/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Liver/metabolism , Mice , Peptide Hormones/genetics , Peptide Hormones/metabolism , Promoter Regions, Genetic/genetics
11.
Phytomedicine ; 99: 154001, 2022 May.
Article in English | MEDLINE | ID: mdl-35240530

ABSTRACT

BACKGROUND: Zhen-Wu-Bu-Qi Decoction (ZWBQD), a traditional Chinese medicine formula comprising Poria, Radix Paeoniae Alba, Rhizoma Atractylodis Macrocephalae, Rhizoma Zingiberis Recens, Radix Codonopsis and Rhizoma Coptidis, is used for treating ulcerative colitis (UC). In a previous study, we have reported ZWBQD mitigates the severity of dextran sulfate sodium (DSS)-induced colitis in mice. HYPOTHESIS: In this study, we aimed to understand the systemic actions and underlying mechanisms of ZWBQD on experimental colitis in mice. METHODS: We used multi-omics techniques and immunoblotting approach to study the pharmacological actions and mechanisms of ZWBQD in DSS-induced chronic colitic mice. RESULTS: We showed that ZWBQD exhibited potent anti-inflammatory properties and significantly protected DSS-induced colitic mice against colon injury by regulating the PI3K-AKT, MAPK signaling pathway and NF-κB signaling pathways. We also revealed that ZWBQD significantly ameliorated gut microbiota dysbiosis and abnormalities of tryptophan catabolites induced by DSS. CONCLUSIONS: We demonstrated that the therapeutic effects of ZWBQD on experimental colitis are mediated by regulating multiple signaling pathways and modulation of gut microbiota. Our study employed an integrative strategy to elucidate novel mechanisms of ZWBQD, which provides new insights into the development of Chinese herbal medicine-based therapeutics for UC.

12.
Plant Cell ; 34(5): 1804-1821, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35080617

ABSTRACT

Plant viruses with densely packed genomes employ noncanonical translational strategies to increase the coding capacity for viral function. However, the diverse translational strategies used make it challenging to define the full set of viral genes. Here, using tomato yellow leaf curl Thailand virus (TYLCTHV, genus Begomovirus) as a model system, we identified genes beyond the annotated gene sets by experimentally profiling in vivo translation initiation sites (TISs). We found that unanticipated AUG TISs were prevalent and determined that their usage involves alternative transcriptional and/or translational start sites and is associated with flanking mRNA sequences. Specifically, two downstream in-frame TISs were identified in the viral gene AV2. These TISs were conserved in the begomovirus lineage and led to the translation of different protein isoforms localized to cytoplasmic puncta and at the cell periphery, respectively. In addition, we found translational evidence of an unexplored gene, BV2. BV2 is conserved among TYLCTHV isolates and localizes to the endoplasmic reticulum and plasmodesmata. Mutations of AV2 isoforms and BV2 significantly attenuated disease symptoms in tomato (Solanum lycopersicum). In conclusion, our study pinpointing in vivo TISs untangles the coding complexity of a plant viral genome and, more importantly, illustrates the biological significance of the hidden open-reading frames encoding viral factors for pathogenicity.


Subject(s)
Begomovirus , Solanum lycopersicum , Begomovirus/genetics , Genome, Viral , Solanum lycopersicum/genetics , Open Reading Frames/genetics , Phylogeny , Plant Diseases/genetics
13.
Altern Ther Health Med ; 28(7): 10-17, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34559684

ABSTRACT

Background: For older adults, osteoarthritis (OA) is a common chronic disease that may cause pain, stiffness, and even disability of the affected knee joints. Aromatherapy might presumed to be an alternative and supplemental therapy. Primary Study Objective: To investigate the effects of aromatherapy on relieving knee pain and improving physical functions among older adults with OA. Methods/Design: A true experimental design with randomized assignment of both treatment (aromatherapy) and control (placebo) groups was used for this study. Participants: Volunteers from 3 local communities aged ≥50 y with self-reported OA-related knee pain were recruited. Interventions: A synergistic blend of essential oils diluted to a concentration of 3% was administered to participants in treatment (essential oil) group, whereas mineral oil without essential oil was applied to participants in control (placebo) group. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), including subscales of pain, stiffness, and physical function, was employed to record scores before intervention, 4 wk postintervention, and 8 wk postintervention. Pain scores were also measured and collected by using the visual analog scale at the above counterparts. The Stata v.13 software was used to perform referent statistics with a significance level (α) of 0.05 adopted. Results: The progressive linear model showed that continuous use of essential oils for 8 wk not only relieves pain immediately, but also further reduces the pain scores of participants, thus proving the long-term effect of aromatherapy on alleviating knee arthritis. Repeated measures analysis of variance further showed that time (intervention duration) is an important factor affecting all outcome scores. Except for stiffness subscales measured by WOMAC, all interactions between groups were significant. Conclusions: Aromatherapy is validated to be an effective alternative therapy in improving clinical outcomes for patients with OA-induced knee conditions. In addition, longer intervention duration (8 wk instead of 4 wk) yielded better treatment results for participants.


Subject(s)
Oils, Volatile , Osteoarthritis, Knee , Aged , Humans , Knee Joint , Mineral Oil/therapeutic use , Oils, Volatile/therapeutic use , Osteoarthritis, Knee/drug therapy , Pain/drug therapy
14.
ISME J ; 16(4): 983-996, 2022 04.
Article in English | MEDLINE | ID: mdl-34750528

ABSTRACT

Irritable bowel syndrome (IBS) is one of the functional gastrointestinal disorders characterized by chronic and/or recurrent symptoms of abdominal pain and irregular defecation. Changed gut microbiota has been proposed to mediate IBS; however, contradictory results exist, and IBS-specific microbiota, metabolites, and their interactions remain poorly understood. To address this issue, we performed metabolomic and metagenomic profiling of stool and serum samples based on discovery (n = 330) and validation (n = 101) cohorts. Fecal metagenomic data showed moderate dysbiosis compared with other diseases, in contrast, serum metabolites showed significant differences with greater power to distinguish IBS patients from healthy controls. Specifically, 726 differentially abundant serum metabolites were identified, including a cluster of fatty acyl-CoAs enriched in IBS. We further identified 522 robust associations between differentially abundant gut bacteria and fecal metabolites, of which three species including Odoribacter splanchnicus, Escherichia coli, and Ruminococcus gnavus were strongly associated with the low abundance of dihydropteroic acid. Moreover, dysregulated tryptophan/serotonin metabolism was found to be correlated with the severity of IBS depression in both fecal and serum metabolomes, characterized by a shift in tryptophan metabolism towards kynurenine production. Collectively, our study revealed serum/fecal metabolome alterations and their relationship with gut microbiome, highlighted the massive alterations of serum metabolites, which empower to recognize IBS patients, suggested potential roles of metabolic dysregulation in IBS pathogenesis, and offered new clues to understand IBS depression comorbidity. Our study provided a valuable resource for future studies, and would facilitate potential clinical applications of IBS featured microbiota and/or metabolites.


Subject(s)
Irritable Bowel Syndrome , Microbiota , Comorbidity , Depression , Feces/microbiology , Humans , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/diagnosis , Irritable Bowel Syndrome/metabolism , Metabolome , Tryptophan/metabolism
15.
Front Pharmacol ; 13: 1010484, 2022.
Article in English | MEDLINE | ID: mdl-36699075

ABSTRACT

Cinnamon protects against irritable bowel syndrome with diarrhea (IBS-D) in humans, but its efficacy and underlying mechanism of action remain poorly understood. Maternally separated (MS) IBS-D rat model and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced post-inflammatory IBS-D rat model are characterized by visceral hyperalgesia and diarrhea. This study used the two models to evaluate the effect of cinnamon extract (CE) on bowel symptoms. The MS rat model was also used to explore its underlying anti-IBS mechanism. cinnamon extract reduced defecation frequency and visceral hyperalgesia in MS rats in a dose-dependent manner and effectively improved visceral hyperalgesia in TNBS rats. The efficacy of cinnamon extract was comparable to the positive drug serotonin receptor 3 (5-HT3) selective antagonist, Ramosetron. Excessive 5-HT, a well-known pathogenic factor for IBS, in the colon and circulation of IBS rats was reduced after cinnamon extract intervention. Both, gene and protein levels of the colonic 5-HT synthetase, Tryptophan Hydroxylase 1 (Tph1), were also decreased in CE-treated IBS rats. In addition, a luciferase assay revealed that cinnamon extract and its major components, catechin, procyanidin B1/2, cinnamic acid, and cinnamyl alcohol, significantly inhibited Tph1 transcription activity in vitro. These findings illustrated that aqueous cinnamon extract partially attenuated bowel symptoms in IBS models by directly inhibiting Tph1 expression and controlling 5-HT synthesis. This provides a scientific viewpoint for the use of cinnamon as a folk medication to treat IBS.

16.
Front Pharmacol ; 13: 1085309, 2022.
Article in English | MEDLINE | ID: mdl-36712668

ABSTRACT

Liver cancer belongs to Gastrointestinal (GI) malignancies which is a common clinical disease, a thorny public health problem, and one of the major diseases that endanger human health. Molecules from natural products (NPs) or their derivatives play an increasingly important role in various chronic diseases such as GI cancers. The chemical composition of the Alstonia yunnanensis Diels roots was studied using silica column chromatography, gel chromatography, recrystallization, and HPLC, and the compounds were structurally identified by modern spectral analysis using mass spectrometry (MS) and nuclear magnetic resonance (1H-, 13C-, HMQC-, HMBC-, and 1H-1HCOSY-NMR), ultraviolet and visible spectrum (UV), and electronic Circular Dichroism (ECD). Acetoxytabernosine (AC), an indole alkaloid with antitumor activity, was isolated from Alstonia yunnanensis Diels root. The current study aimed to investigate the influence of AC on the cell proliferation of BEL-7402 and SMMC7721 and to elucidate the underlying mechanism. The absolute configuration of AC was calculated by ECD (electronic circular dichroism). The effects of AC on the viability of different tumor cell lines were studied by the SRB method. The death mode of human hepatoma cells caused by AC was studied by TUNEL cell apoptosis detection and AnnexinV-FITC/PI double staining image. Mitochondrial membrane potential was detected by JC-1. The effects of AC on the expression of apoptosis-related proteins (Caspase9, Caspase3, and Parp-1) in SMMC7721 and BEL-7402 cells were detected by western blot. It was found that the absolute configuration of AC is 19(s), 20(s)-Acetoxytabernosine. AC could induce apoptosis of SMMC7721 and BEL-7402, and block the replication of DNA in the G1 phase. Under the treatment of AC, the total protein expression of apoptosis-related proteins (Caspase9, Caspase3, and Parp-1) significantly decreased in SMMC7721 and BEL-7402. The results suggested that AC induced apoptosis through a caspase-dependent intrinsic pathway in SMMC7721 and BEL-7402, and natural product-based drug development is an important direction in antitumor drug discovery and research.

17.
Sensors (Basel) ; 21(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34960445

ABSTRACT

With the widespread application of machine learning methods, the continuous improvement of forecast accuracy has become an important task, which is especially crucial for landslide displacement predictions. This study aimed to propose a novel prediction model to improve accuracy in landslide prediction, based on the combination of multiple new algorithms. The proposed new method includes three parts: data preparation, multi-swarm intelligence (MSI) optimization, and displacement prediction. In the data preparation, the complete ensemble empirical mode decomposition (CEEMD) is adopted to separate the trend and periodic displacements from the observed cumulative landslide displacement. The frequency component and residual component of reconstructed inducing factors that related to landslide movements are also extracted by the CEEMD and t-test, and then picked out with edit distance on real sequence (EDR) as input variables for the support vector regression (SVR) model. MSI optimization algorithms are used to optimize the SVR model in the MSI optimization; thus, six predictions models can be obtained that can be used in the displacement prediction part. Finally, the trend and periodic displacements are predicted by six optimized SVR models, respectively. The trend displacement and periodic displacement with the highest prediction accuracy are added and regarded as the final prediction result. The case study of the Shiliushubao landslide shows that the prediction results match the observed data well with an improvement in the aspect of average relative error, which indicates that the proposed model can predict landslide displacements with high precision, even when the displacements are characterized by stepped curves that under the influence of multiple time-varying factors.

18.
J Med Chem ; 64(23): 17051-17062, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34699215

ABSTRACT

Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer with poor prognosis. Here, we present a peptide-drug conjugate (PDC)─bradykinin-potentiating peptide-paclitaxel (BPP-PTX) conjugate─synthesized by conjugating BPP9a with PTX via a succinyl linker. BPP-PTX targets the angiotensin-converting enzyme (ACE) on TNBC cells. ACE was found to be ectopically expressed in two TNBC cell lines but was absent in both the receptor-positive breast cancer cell line and healthy kidney cell line. Overexpression, knockdown, and competitive inhibition experiments demonstrated ACE-mediated cytotoxicity of BPP-PTX. In vivo, ACE-positive tumors were enriched with BPP-PTX, with the PDC being better tolerated than plain PTX. Compared with plain PTX, BPP-PTX exhibited improved tumor-suppressive effects in MDA-MB-468 xenografted female nude mice. Meanwhile, BPP-PTX resulted in less body weight loss and white blood cell reduction toxicity. These results collectively imply the novelty, efficacy, and low-toxicity profile of BPP-PTX as a potential therapeutic for ACE-positive TNBC.


Subject(s)
Bradykinin/chemistry , Oligopeptides/pharmacology , Paclitaxel/pharmacology , Peptidyl-Dipeptidase A/metabolism , Triple Negative Breast Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Paclitaxel/chemistry , Tissue Distribution , Triple Negative Breast Neoplasms/enzymology
19.
Front Endocrinol (Lausanne) ; 12: 681647, 2021.
Article in English | MEDLINE | ID: mdl-34276562

ABSTRACT

Spexin (SPX) is a pleiotropic peptide with highly conserved protein sequence from fish to mammals and its biological actions are mediated by GalR2/GalR3 receptors expressed in target tissues. Recently, SPX has been confirmed to be a novel satiety factor in fish species but whether the peptide has a similar function in mammals is still unclear. Using the mouse as a model, the functional role of SPX in feeding control and the mechanisms involved were investigated. After food intake, serum SPX in mice could be up-regulated with elevations of transcript expression and tissue content of SPX in the glandular stomach but not in other tissues examined. As revealed by immunohistochemical staining, food intake also intensified SPX signals in the major cell types forming the gastric glands (including the foveolar cells, parietal cells, and chief cells) within the gastric mucosa of glandular stomach. Furthermore, IP injection of SPX was effective in reducing food intake with parallel attenuation in transcript expression of NPY, AgRP, NPY type 5 receptor (NPY5R), and ghrelin receptor (GHSR) in the hypothalamus, and these inhibitory effects could be blocked by GalR3 but not GalR2 antagonism. In agreement with the central actions of SPX, similar inhibition on feeding and hypothalamic expression of NPY, AgRP, NPY5R, and GHSR could also be noted with ICV injection of SPX. In the same study, in contrast to the drop in NPY5R and GHSR, SPX treatment could induce parallel rises of transcript expression of leptin receptor (LepR) and melanocortin 4 receptor (MC4R) in the hypothalamus. These findings, as a whole, suggest that the role of SPX as a satiety factor is well conserved in the mouse. Apparently, food intake can induce SPX production in glandular stomach and contribute to the postprandial rise of SPX in circulation. Through GalR3 activation, this SPX signal can act within the hypothalamus to trigger feedback inhibition on feeding by differential modulation of feeding regulators (NPY and AgRP) and their receptors (NPY5R, GHSR, LepR, and MC4R) involved in the feeding circuitry within the CNS.


Subject(s)
Eating/physiology , Hypothalamus/metabolism , Peptide Hormones/metabolism , Satiation/physiology , Animals , Mice , Receptors, Ghrelin/metabolism , Up-Regulation
20.
Front Endocrinol (Lausanne) ; 12: 681648, 2021.
Article in English | MEDLINE | ID: mdl-34025589

ABSTRACT

Spexin (SPX), a neuropeptide with diverse functions, is a novel satiety factor in fish models and its role in feeding control has been recently confirmed in mammals. In mouse, food intake was shown to trigger SPX expression in glandular stomach with parallel rise in serum SPX and these SPX signals could inhibit feeding via central actions within the hypothalamus. However, the mechanisms for SPX regulation by food intake are still unclear. To examine the role of insulin signal caused by glucose uptake in SPX regulation, the mice were IP injected with glucose and insulin, respectively. In this case, serum SPX was elevated by glucose but not altered by insulin. Meanwhile, SPX transcript expression in the glandular stomach was up-regulated by glucose but the opposite was true for insulin treatment. Using in situ hybridization, the differential effects on SPX gene expression were located in the gastric mucosa of glandular stomach. Co-injection experiments also revealed that glucose stimulation on serum SPX and SPX mRNA expressed in glandular stomach could be blocked by insulin. In gastric mucosal cells prepared from glandular stomach, the opposite effects on SPX transcript expression by glucose and insulin could still be noted with similar blockade of the stimulatory effects of glucose by insulin. In this cell model, SPX gene expression induced by glucose was mediated by glucose uptake via GLUT, ATP synthesis by glycolysis/respiratory chain, and subsequent modulation of KATP channel activity, but the voltage-sensitive Ca2+ channels were not involved. The corresponding inhibition by insulin, however, was mediated by PI3K/Akt, MEK1/2/ERK1/2, and P38MAPK cascades coupled to insulin receptor but not IGF-1 receptor. Apparently, glucose uptake in mice can induce SPX expression in the glandular stomach through ATP synthesis via glucose metabolism and subsequent modification of KATP channel activity, which may contribute to SPX release into circulation to act as the satiety signal after food intake. The insulin rise caused by glucose uptake, presumably originated from the pancreas, may serve as a negative feedback to inhibit the SPX response by activating MAPK and PI3K/Akt pathways in the stomach.


Subject(s)
Glucose/metabolism , Insulin/metabolism , Peptide Hormones/metabolism , Stomach/metabolism , Animals , Cells, Cultured , Eating , Gene Expression , Male , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , Peptide Hormones/blood , Peptide Hormones/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stomach/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...