Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Curr Med Chem ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38879763

ABSTRACT

INTRODUCTION: Based on comprehensive network-pharmacology and molecular docking analysis, this study was intended to unveil the multiple mechanisms of Yi-- Gai-San (YGS) in treating the tremor-dominant subtype of Parkinson's disease (PDDT). The compounds of YGS were meticulously analyzed, selected, and standardized with references to their pharmacological attributes. Its components included Gouteng (Uncaria rhynchophylla), Chaihu (Radix Bupleuri), Chuanxiong (Chuanxiong Rhizoma), Danggui (Angelicae Sinensis Radix), Fuling (Wolfiporia extensa), Baizhu (Atractylodis macrocephalae rhizoma), and Gancao (Licorice, Glycyrrhizae radix). METHOD: We identified 75 active compounds within YGS. From these, we predicted 110 gene targets, which exhibited a direct association with PD-DT. PPI network results highlighted core target proteins, including TP53, SLC6A3, GAPDH, MAOB, AKT, BAX, IL6, BCL2, PKA, and CASP3. These proteins potentially alleviate PD-DT by targeting inflammation, modulating neuronal cell apoptosis, and regulating the dopamine system. Furthermore, GO and KEGG enrichment analyses emphasized that YGS might influence various mechanisms, such as the apoptotic process, mitochondrial autophagy, Age- Rage signaling, and dopaminergic and serotonergic synapses. The core proteins from the PPI analysis were selected for the docking experiment. RESULT: The docking results demonstrated that the most stable ligand-receptor conformations were kaempferol with CASP3 (-9.5 kcal/mol), stigmasterol with SLC6A3 (-10.5 kcal/mol), shinpterocarpin with BCL2L1 (-9.6 kcal/mol), hirsutine with MAOB (-9.7 kcal/mol), hederagenin with PRKACA (-9.8 kcal/mol), and yatein with GAPDH (-9.8 kcal/mol). These results provide us with research objectives for future endeavors in extracting single compounds for drug manufacturing or in-depth studies on drug mechanisms. CONCLUSION: From these computational findings, we suggested that YGS might mitigate PD-DT via "multi-compounds, multi-targets, and multi-pathways."

2.
ACS Appl Mater Interfaces ; 16(9): 12033-12041, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38407045

ABSTRACT

The incorporation of plasmonic metal nanostructures into semiconducting chalcogenides in the form of core-shell structures provides a promising approach to enhancing the performance of photodetectors. In this study, we combined Au nanoparticles with newly developed copper-based chalcogenides Cu2NiSnS4 (Au/CNTS) to achieve an ultrahigh optoelectronic response in the visible regime. The high-quality Au/CNTS core-shell nanocrystals (NCs) were synthesized by developing a unique colloidal hot-injection method, which allowed for excellent control over sizes, shapes, and elemental compositions. The as-synthesized Au/CNTS hybrid core-shell NCs exhibited enhanced optical absorption, carrier extraction efficiency, and improved photosensing performance owing to the plasmonic-induced resonance energy transfer effect of the Au core. This effect led to a significant increase in the carrier density of the Au/CNTS NCs, resulting in a measured responsivity of 1.2 × 103 AW-1, a specific detectivity of 6.2 × 1011 Jones, and an external quantum efficiency of 3.8 × 105 % at an incident power density of 318.5 µW cm-2. These results enlighten a new era in the development of plasmonic core-shell nanostructure-based visible photodetectors.

3.
Biomacromolecules ; 25(3): 2041-2051, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38380621

ABSTRACT

Triple-negative breast cancer (TNBC), accounting for approximately 20% of breast cancer cases, is a particular subtype that lacks tumor-specific targets and is difficult to treat due to its high aggressiveness and poor prognosis. Chemotherapy remains the major systemic treatment for TNBC. However, its applicability and efficacy in the clinic are usually concerning due to a lack of targeting, adverse side effects, and occurrence of multidrug resistance, suggesting that the development of effective therapeutics is still highly demanded nowadays. In this study, an injectable alginate complex hydrogel loaded with indocyanine green (ICG)-entrapped perfluorocarbon nanoemulsions (IPNEs) and camptothecin (CPT)-doped chitosan nanoparticles (CCNPs), named IPECCNAHG, was developed for photochemotherapy against TNBC. IPNEs with perfluorocarbon can induce hyperthermia and generate more singlet oxygen than an equal dose of free ICG upon near-infrared (NIR) irradiation to achieve photothermal and photodynamic therapy. CCNPs with positive charge may facilitate cellular internalization and provide sustained release of CPT to carry out chemotherapy. Both nanovectors can stabilize agents in the same hydrogel system without interactions. IPECCNAHG integrating IPNEs and CCNPs enables stage-wise combinational therapeutics that may overcome the issues described above. With 60 s of NIR irradiation, IPECCNAHG significantly inhibited the growth of MDA-MB-231 tumors in the mice without systemic toxicity within the 21 day treatment. We speculate that such anticancer efficacy was accomplished by phototherapy followed by chemotherapy, where cancer cells were first destroyed by IPNE-derived hyperthermia and singlet oxygen, followed by sustained damage with CPT after internalization of CCNPs; a two-stage tumoricidal process. Taken together, the developed IPECCNAHG is anticipated to be a feasible tool for TNBC treatment in the clinic.


Subject(s)
Fluorocarbons , Nanoparticles , Photochemotherapy , Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Hydrogels/therapeutic use , Singlet Oxygen , Phototherapy , Indocyanine Green/pharmacology , Cell Line, Tumor
4.
ACS Appl Mater Interfaces ; 15(13): 17019-17028, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36947433

ABSTRACT

Interfacial water molecules affect carrier transportation within graphene and related applications. Without proper tools, however, most of the previous works focus on simulation modeling rather than experimental validation. To overcome this obstacle, a series of graphene field-effect transistors (GFETs) with suspended (substrate-free, SF) and supported (oxide-supported, OS) configurations are developed to investigate the graphene-water interface under different hydrophilic conditions. With deionized water environments, in our experiments, the electrical transportation behaviors of the graphene mainly originate from the evolution of the interfacial water-molecule arrangement. Also, these current-voltage behaviors can be used to elucidate the first-water layer at the graphene-water interface. For SF-GFET, our experimental results show positive hysteresis in electrical transportation. These imply highly ordered interfacial water molecules with a separated-ionic distributed structure. For OS-GFET, on the contrary, the negative hysteresis shows the formation of the hydrogen-bond interaction between the interfacial water layer and the SiO2 substrate under the graphene. This interaction further promotes current conduction through the graphene/water interface. In addition, the net current-voltage relationship also indicates the energy required to change the orientation of the first-layer water molecules during electro-potential change. Therefore, our work gives an insight into graphene-water interfacial evolution with field-effect modulation. Furthermore, this experimental architecture also paves the way for investigating 2D solid-liquid interfacial features.

5.
Biosens Bioelectron ; 210: 114338, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35550939

ABSTRACT

C-Reactive protein (CRP) is an essential biomarker relevant to various disease prognoses. Current biosensors require a significant amount of time for detecting CRP. To address this issue, this work proposes electrokinetic flow-assisted molecule trapping integrated with an impedance biosensor, where a driving signal in terms of a gated sine wave is provided to circularly arranged electrodes which detect proteins. To verify the biosensor's efficacy, protein aggregation on the electrode surface was evaluated through a fluorescence analysis and measurement of the electrochemical impedance spectrum (EIS). The fluorescence analysis with avidin showed that target samples largely accumulated on the electrode surface upon provision of the driving signal. The EIS measurement of CRP accumulation on the electrode surface further confirmed a significant electrokinetic phenomenon at the electrode/electrolyte interface. Even at the low CRP concentration of 10 pg/ml, the proposed device's sensitivity and reliability were as high as 3.92 pg/ml with a signal-to noise ratio (SNR) of ≥3, respectively. In addition, the protein detection time (without considering the preparation time) was minimized to as low as 90 s with the proposed device. This device's advantage is its minimal time consumption, and simple drop-analysis process flow; hence, it was used for monitoring clinical serum samples.


Subject(s)
Biosensing Techniques , C-Reactive Protein/analysis , Electrochemical Techniques , Electrodes , Reproducibility of Results
6.
Micromachines (Basel) ; 13(4)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35457813

ABSTRACT

In recent decades, the research of nano-structure devices (e.g., carbon nanotube and graphene) has experienced rapid growth. These materials have supreme electronic, thermal, optical and mechanical properties and have received widespread concern in different fields. It is worth noting that gate hysteresis behavior of field effect transistors can always be found in ambient conditions, which may influence the transmission appearance. Many researchers have put forward various views on this question. Here, we summarize and discuss the mechanisms behind hysteresis, different influencing factors and improvement methods which help decrease or eliminate unevenness and asymmetry.

7.
J Pers Med ; 11(6)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205354

ABSTRACT

The evaluation of fluid status can save adults from life-threatening conditions, but the current methods are invasive or time-consuming. Therefore, we developed a portable device for measuring salivary conductivity. This prospective observational study enrolled 20 volunteers with no history of systemic diseases. Participants were observed for 13 h, including water restriction for 12 h followed by rehydration with 1000 mL water within 1 h. Serum and urine biomarkers for fluid status, thirst scales, and salivary conductivity were collected during dehydration and rehydration. No significant differences in age, body mass index, glycohemoglobin, and estimated glomerular filtration rate were noted between sexes. Salivary conductivity increased after water restriction and decreased after rehydration. Similarly, urine osmolality, urine specific gravity, thirst intensity scales, and body weight followed the same trend and were statistically significant. The angiotensin-converting enzyme and aldosterone levels showed the same trend, without reaching statistical significance. The red blood cell count and hemoglobin concentration also followed the same trend. Analyzing the receiver operating characteristic curves, the area under the curve was 0.707 (95% confidence interval 0.542-0.873, p = 0.025). Using the Youden index, the optimal cutoff determined as 2678.09 µs/cm (sensitivity: 90%, specificity: 55%). This biodevice effectively screened dehydration among healthy adults.

8.
Lab Chip ; 21(12): 2372-2382, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34128001

ABSTRACT

We investigate liquid dielectrophoresis (LDEP) to implement field-effect pumps (FEPs) that drive liquids from source, via gate, toward drain electric fields between parallel plates without external pumps or the problem of dead volume. The appropriate gate electric field establishes a wall-less virtual microchannel to transfer the liquid from source to drain with an adjustable flow rate (Q) controlled by the difference of the square of the electric field strength (ΔE2DS). Analogous to field-effect transistors (FETs), the FEPs can operate in a "linear", "transition" or "saturation" region depending on ΔE2GD and ΔE2DS. With a sufficient ΔE2GD and a small ΔE2DS, the FEPs operated in the linear region where Q was linearly proportional to ΔE2DS and inversely proportional to the flow resistance R that was mainly determined by the length (L), width (W) and height (H) of a stable and fully-occupied virtual microchannel. With an insufficient ΔE2GD and a moderate to large ΔE2DS, narrowing, tapering and even pinch-off of virtual microchannels were observed, which increased R and changed the operation into the transition or saturation region. A field-effect stream merger regulating two streams was built based on two FEPs with shared gate and drain electrodes. The versatility of FEPs was demonstrated with preliminary studies on whole blood and particle solutions.


Subject(s)
Electricity , Electrodes
9.
Biosensors (Basel) ; 10(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353033

ABSTRACT

This article reviews optical biosensors and their integration with microfluidic channels. The integrated biosensors have the advantages of higher accuracy and sensitivity because they can simultaneously monitor two or more parameters. They can further incorporate many functionalities such as electrical control and signal readout monolithically in a single semiconductor chip, making them ideal candidates for point-of-care testing. In this article, we discuss the applications by specifically looking into point-of-care testing (POCT) using integrated optical sensors. The requirement and future perspective of integrated optical biosensors for POC is addressed.


Subject(s)
Biosensing Techniques , Lab-On-A-Chip Devices , Point-of-Care Testing , Equipment Design , Microfluidic Analytical Techniques , Oligonucleotide Array Sequence Analysis , Point-of-Care Systems , Semiconductors
10.
J Am Heart Assoc ; 9(2): e013036, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31910780

ABSTRACT

Background Cardiovascular disease is the leading cause of morbidity and mortality in patients with end-stage renal disease. Heart rhythm complexity analysis has been shown to be useful in predicting outcomes in various diseases; however, data on patients with end-stage renal disease are limited. In this study, we analyzed the association between heart rhythm complexity and long-term cardiovascular outcomes in patients with end-stage renal disease receiving peritoneal dialysis. Methods and Results We prospectively enrolled 133 patients receiving peritoneal dialysis and analyzed linear heart rate variability and heart rhythm complexity variables including detrended fluctuation analysis (DFA) and multiscale entropy. The primary outcome was cardiovascular mortality, and the secondary outcome was the occurrence of major adverse cardiovascular events. After a median of 6.37 years of follow-up, 21 patients (22%) died from cardiovascular causes. These patients had a significantly lower low-frequency band of heart rate variability, low/high-frequency band ratio, total power band of heart rate variability, heart rate turbulence slope, deceleration capacity, short-term DFA (DFAα1); and multiscale entropy slopes 1 to 5, scale 5, area 1 to 5, and area 6 to 20 compared with the patients who did not die from cardiovascular causes. Time-dependent receiver operating characteristic curve analysis showed that DFAα1 had the greatest discriminatory power for cardiovascular mortality (area under the curve: 0.763) and major adverse cardiovascular events (area under the curve: 0.730). The best cutoff value for DFAα1 was 0.98 to predict both cardiovascular mortality and major adverse cardiovascular events. Multivariate Cox regression analysis showed that DFAα1 (hazard ratio: 0.076; 95% CI, 0.016-0.366; P=0.001) and area 1 to 5 (hazard ratio: 0.645; 95% CI, 0.447-0.930; P=0.019) were significantly associated with cardiovascular mortality. Conclusions Heart rhythm complexity appears to be a promising noninvasive tool to predict long-term cardiovascular outcomes in patients receiving peritoneal dialysis.


Subject(s)
Cardiovascular Diseases/etiology , Electrocardiography, Ambulatory , Heart Rate , Kidney Failure, Chronic/therapy , Peritoneal Dialysis/adverse effects , Adult , Aged , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/mortality , Cardiovascular Diseases/physiopathology , Female , Humans , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/mortality , Kidney Failure, Chronic/physiopathology , Male , Middle Aged , Peritoneal Dialysis/mortality , Predictive Value of Tests , Prospective Studies , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome
11.
Sci Rep ; 9(1): 14794, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31616031

ABSTRACT

Microfluidic pump is an essential component in lab-on-chip applications. It is of importance to develop an active microfluidic pump with low-power and low-cost characteristics for portable and miniaturized diagnostic systems. Taking advantages of CMOS technologies, in this work, we report a low-power microfluidic pump based on travelling-wave electroosmosis (TWEO). Utilizing an integrated driving circuit, this monolithic CMOS microfluidic pump can be operated at 1.5 V driving voltage with a power consumption of 1.74 mW. The integrated driving circuit consist of a resistor-capacitor (RC) oscillator, a 90-degrees phase-shift square wave generator, and buffer amplifiers. Moreover, capabilities of the developed CMOS TWEO pump to drive diluted human serum are characterized. The flow rate of diluted human serum with dilution ratio of 1:1000 can achieve 51 µm/s. This is the first time demonstrating an in-situ CMOS-based microfluidic pump to drive the clinical diluted serum sample. As a consequence, this work demonstrates an essential component of CMOS biotechnologies for potential applications of portable in vitro diagnosis (IVD) systems.

12.
Sci Rep ; 9(1): 14771, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31611585

ABSTRACT

Chronic kidney disease (CKD) has become a major issue in long-term healthcare. It is caused by recurrent kidney injury, which is possible induced by dehydration and heat stress. Therefore, it is important to access the dehydration diagnosis on fields. Conventional instruments for assessing dehydration from blood and urine samples are expensive and time-consuming. These disadvantages limit their applications in high-risk groups susceptible to kidney disease. To address this unmet need, this study presents a portable miniaturized device for dehydration diagnosis with clinical saliva samples. With co-plane coating-free gold electrodes, the dehydration diagnosis was achieved with a saliva specimen at low volumes (50-500 µL). To examine the characteristics, the developed device was assessed by using standard conductivity solutions and the examined variation was <5%. To validate the use for field applications, saliva samples were measured by the developed device and the measured results were compared with standard markers of serum osmolality (N = 30). These data indicate that the measured saliva conductivity is consistent with serum osmolality. And it shows significant difference between healthy adults and healthy farmers (p < 0.05), who typically suffer high risks of CKD. Based on this work, the proposed device and measurement offer a useful method to diagnosis dehydrations and indicate possible potential for CKD.


Subject(s)
Dehydration/diagnosis , Saliva/chemistry , Electric Conductivity , Electrochemical Techniques/instrumentation , Electrodes , Equipment Design , Humans , Kidney/pathology , Renal Insufficiency, Chronic/diagnosis
13.
Nanotechnology ; 30(24): 245709, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-30731440

ABSTRACT

In this work, we study surface functionalization effects of artificially stacked graphene bilayers (ASGBs) to control its wetting properties via low-damage plasma. The ASGBs were prepared on a SiO2/Si substrate by stacking two monolayer graphene, which was grown by chemical vapor deposition. As a result, the low-damage plasma functionalization of ASGBs could hold both the key characteristics of surface functionalization and electrical transport properties of graphene sheets. To characterize ASGBs, Raman and x-ray photoelectron spectroscopy (XPS) were used to determine the degree of defect formation and functionalization. Meanwhile, the degree of the wettability of the ASGBs surface was determined by optical contact angle (CA) measurements. Based on experimental results, the compositional ratio of C-OH + COOH was found to increase 67% based on the analysis of XPS spectra after low-damage plasma treatment. This treatment effect can also be found with 75.3% decrease in the CA of water droplet on graphene. In addition, we found that the ratio of 2D/(D + G') in Raman spectra shows strong correlation to the measured CA; it can be a reliable indicator of ASGBs surface wettability modification. This work showed that we obtained a higher degree functionalization of ASGBs without degrading the under-layer structure of ASGBs due to the moderate low-damage plasma treatment. The presented process technique of controllable wettability through low-damage plasma treatment can be employed for potential application in graphene-based sensors/devices.

14.
Sci Rep ; 8(1): 15627, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30353094

ABSTRACT

Abdominal aorta calcification (AAC) has been associated with clinical outcomes in peritoneal dialysis (PD) patients. Heart rhythm complexity analysis has been shown to be a promising tool to predict outcomes in patients with cardiovascular disease. In this study, we aimed to analyze the association between heart rhythm complexity and AAC in PD patients. We prospectively analyzed 133 PD patients. Heart rhythm complexity including detrended fluctuation analysis and multiscale entropy was performed. In linear analysis, the patients in the higher AAC group (AAC ≥15%) had a significantly lower standard deviation of normal RR intervals, very low frequency, low frequency, high frequency and low/high frequency ratio. In non-linear analysis, DFAα1, slope 1-5, scale 5 and area 6-20 were significantly lower in the patients with higher AAC. Receiver operating characteristic curve analysis showed that DFAα1 had the greatest discriminatory power to differentiate these two groups. Multivariate logistic regression analysis showed that DFAα1 and HbA1c were significantly associated with higher AAC ratio. Adding DFAα1 significantly improved the discriminatory power of the linear parameters in both net reclassification improvement and integrated discrimination improvement models. In conclusion, DFAα1 is highly associated with AAC and a potential cardiovascular marker in PD patients.


Subject(s)
Aorta, Abdominal/physiopathology , Heart Rate/physiology , Peritoneal Dialysis , Vascular Calcification/physiopathology , Area Under Curve , Entropy , Female , Humans , Logistic Models , Male , Middle Aged , Multivariate Analysis , ROC Curve
15.
Data Brief ; 17: 1288-1294, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29845100

ABSTRACT

This article presents a new sensitivity-improved electrochemical measurement architecture for cardiovascular disease (CVD) diagnosis by detecting CVD biomarkers, S100 beta protein and C-reactive protein (CRP). The new architecture includes a design for a new electrochemical measurement set-up, which improves the reaction conditions of chemical and biological molecules and incorporates a newly biochip design. With the new architecture, electrochemical measurement experiments were undertaken. The results obtained are related to the research article entitled "Improving sensitivity of a miniaturized label-free electrochemical biosensor using zigzag electrodes" [1].

16.
Biosens Bioelectron ; 103: 130-137, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29291592

ABSTRACT

Cardiovascular disease (CVD) is a leading cause of death among chronic diseases worldwide. Therefore, it is important to be able to detect CVD biomarkers early so that patients can be diagnosed properly and begin treatment as soon as possible. To detect biomarkers more conveniently, point-of-care (PoC) biosensors, which are easy to use and are of low cost, are becoming even more necessary. This paper focuses on developing a label-free electrochemical biosensor with high sensitivity for PoC applications to detect CVD biomarkers such as S100 beta proteins and C-reactive proteins (CRP). To meet the requirements of a PoC application and to improve the measurement sensitivity for detection purposes, a three-electrode configuration was miniaturized and fitted onto a biochip. Computer simulation of an electrolyte current density was used to investigate several potential effective possibilities. It was found that an electrolyte current density at an edge tip structure near the working electrode (WE) and counter electrode (CE) was higher than at other locations. A zigzag structure was then designed at the edge near the WE and CE positions. With this design, we can obtain a higher total electrolyte current. This newly-designed biochip was then used to measure the electrochemical feature. It was found that the measurement efficiency was also improved using this newly designed biochip.


Subject(s)
Biosensing Techniques/methods , C-Reactive Protein/isolation & purification , Cardiovascular Diseases/diagnosis , S100 Calcium Binding Protein beta Subunit/isolation & purification , Biomarkers/chemistry , C-Reactive Protein/chemistry , Electrochemical Techniques/methods , Humans , Point-of-Care Systems , S100 Calcium Binding Protein beta Subunit/chemistry
17.
Sensors (Basel) ; 17(12)2017 Nov 26.
Article in English | MEDLINE | ID: mdl-29186872

ABSTRACT

Coronary artery disease and its related complications pose great threats to human health. In this work, we aim to clinically evaluate a CMOS field-effect biomolecular sensor for cardiac biomarkers, cardiac-specific troponin-I (cTnI), N-terminal prohormone brain natriuretic peptide (NT-proBNP), and interleukin-6 (IL-6). The CMOS biosensor is implemented via a standard commercialized 0.35 µm CMOS process. To validate the sensing characteristics, in buffer conditions, the developed CMOS biosensor has identified the detection limits of IL-6, cTnI, and NT-proBNP as being 45 pM, 32 pM, and 32 pM, respectively. In clinical serum conditions, furthermore, the developed CMOS biosensor performs a good correlation with an enzyme-linked immuno-sorbent assay (ELISA) obtained from a hospital central laboratory. Based on this work, the CMOS field-effect biosensor poses good potential for accomplishing the needs of a point-of-care testing (POCT) system for heart disease diagnosis.


Subject(s)
Biosensing Techniques , Biomarkers , Coronary Artery Disease , Humans , Natriuretic Peptide, Brain , Peptide Fragments , Troponin I
18.
Sensors (Basel) ; 17(4)2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28353680

ABSTRACT

A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO2 detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO2 sensors can be as low as 10 µW and 5 µW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS) system-on-chip (SoC) is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE), an analog-to-digital convertor (ADC), a digital controller and a power management unit (PMU). Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 µW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC) module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO2/Humidity) sensing platform that demonstrates a true self-powering functionality for long-term operations.

19.
Neurourol Urodyn ; 36(7): 1734-1741, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27891636

ABSTRACT

AIM: To quantify the effects of pulsed radiofrequency (PRF) electrical stimulations of the pudendal and pelvic nerves on the bladder function of rats with detrusor overactivity. METHODS: All rats were pretreated with a continuous transvesical infusion of 0.5% acetic acid (AA) for inducing detrusor overactivity. Intravesical pressure was recorded using cysometrography (CMG) during the continuous transvesical infusion to examine the effects of PRF electrical stimulation of the pudendal and pelvic nerves individually. In addition, the activity of caspase-3, an apoptosis marker, in the pelvic nerve was examined to evaluate the impact of PRF on nerve injury. RESULTS: According to the first CMG recording, AA treatment significantly reduced bladder capacity (BC) and intercontraction interval (ICI) to 65% and 66% of the corresponding control values, respectively. Subsequently, PRF electrical stimulation of the pelvic nerve inhibited AA-induced detrusor overactivity and significantly increased BC to approximately 102-110% and ICI to 79-92%; these effects persisted for at least 4 h. Furthermore, PRF did not cause significant neural damage to the target stimulated nerves, as demonstrated by caspase-3 activity. CONCLUSION: PRF electrical stimulation of pelvic nerves exerted a long-lasting effect of suppressing AA-induced detrusor overactivity. This modality can be used as an alternative approach for improving bladder continence in patients with overactive bladder syndrome.


Subject(s)
Pulsed Radiofrequency Treatment , Urinary Bladder, Overactive/therapy , Acetic Acid , Animals , Disease Models, Animal , Female , Rats , Rats, Sprague-Dawley , Treatment Outcome , Urinary Bladder, Overactive/chemically induced , Urinary Bladder, Overactive/physiopathology
20.
Lab Chip ; 16(16): 3105-13, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27314254

ABSTRACT

The hemoglobin-A1c test, measuring the ratio of glycated hemoglobin (HbA1c) to hemoglobin (Hb) levels, has been a standard assay in diabetes diagnosis that removes the day-to-day glucose level variation. Currently, the HbA1c test is restricted to hospitals and central laboratories due to the laborious, time-consuming whole blood processing and bulky instruments. In this paper, we have developed a microfluidic device integrating dual CMOS polysilicon nanowire sensors (MINS) for on-chip whole blood processing and simultaneous detection of multiple analytes. The micromachined polymethylmethacrylate (PMMA) microfluidic device consisted of a serpentine microchannel with multiple dam structures designed for non-lysed cells or debris trapping, uniform plasma/buffer mixing and dilution. The CMOS-fabricated polysilicon nanowire sensors integrated with the microfluidic device were designed for the simultaneous, label-free electrical detection of multiple analytes. Our study first measured the Hb and HbA1c levels in 11 clinical samples via these nanowire sensors. The results were compared with those of standard Hb and HbA1c measurement methods (Hb: the sodium lauryl sulfate hemoglobin detection method; HbA1c: cation-exchange high-performance liquid chromatography) and showed comparable outcomes. Finally, we successfully demonstrated the efficacy of the MINS device's on-chip whole blood processing followed by simultaneous Hb and HbA1c measurement in a clinical sample. Compared to current Hb and HbA1c sensing instruments, the MINS platform is compact and can simultaneously detect two analytes with only 5 µL of whole blood, which corresponds to a 300-fold blood volume reduction. The total assay time, including the in situ sample processing and analyte detection, was just 30 minutes. Based on its on-chip whole blood processing and simultaneous multiple analyte detection functionalities with a lower sample volume requirement and shorter process time, the MINS device can be effectively applied to real-time diabetes diagnostics and monitoring in point-of-care settings.


Subject(s)
Blood Chemical Analysis/instrumentation , Lab-On-A-Chip Devices , Nanowires/chemistry , Algorithms , Biomarkers/blood , Computer Simulation , Diabetes Mellitus/blood , Equipment Design , Glycated Hemoglobin/analysis , Hemoglobins/analysis , Humans , Microscopy, Electron, Scanning , Nanowires/ultrastructure , Reproducibility of Results , Silicon Compounds/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...