Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 7(76): eabn3127, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35857619

ABSTRACT

The baseline composition of T cells directly affects later response to pathogens, but the complexity of precursor states remains poorly defined. Here, we examined the baseline state of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells in unexposed individuals. SARS-CoV-2-specific CD4+ T cells were identified in prepandemic blood samples by major histocompatibility complex (MHC) class II tetramer staining and enrichment. Our data revealed a substantial number of SARS-CoV-2-specific T cells that expressed memory phenotype markers. Integrated phenotypic analyses demonstrated diverse preexisting memory states that included cells with distinct polarization features and trafficking potential to barrier tissues. T cell clones generated from tetramer-labeled cells cross-reacted with antigens from commensal bacteria in the skin and gastrointestinal tract. Direct ex vivo tetramer staining for one spike-specific population showed a similar level of cross-reactivity to sequences from endemic coronavirus and commensal bacteria. These data highlight the complexity of precursor T cell repertoire and implicate noninfectious exposures to common microbes as a key factor that shapes human preexisting immunity to SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Immunologic Memory , Spike Glycoprotein, Coronavirus , T-Lymphocytes
2.
bioRxiv ; 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34873598

ABSTRACT

The baseline composition of T cells directly impacts later response to a pathogen, but the complexity of precursor states remains poorly defined. Here we examined the baseline state of SARS-CoV-2 specific T cells in unexposed individuals. SARS-CoV-2 specific CD4 + T cells were identified in pre-pandemic blood samples by class II peptide-MHC tetramer staining and enrichment. Our data revealed a substantial number of SARS-CoV-2 specific T cells that expressed memory phenotype markers, including memory cells with gut homing receptors. T cell clones generated from tetramer-labeled cells cross-reacted with bacterial peptides and responded to stool lysates in a MHC-dependent manner. Integrated phenotypic analyses revealed additional precursor diversity that included T cells with distinct polarized states and trafficking potential to other barrier tissues. Our findings illustrate a complex pre-existing memory pool poised for immunologic challenges and implicate non-infectious stimuli from commensal colonization as a factor that shapes pre-existing immunity. ONE SENTENCE SUMMARY: Pre-existing immunity to SARS-CoV-2 contains a complex pool of precursor lymphocytes that include differentiated cells with broad tissue tropism and the potential to cross-react with commensal antigens.

3.
Cancer Res ; 79(23): 6010-6023, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31481499

ABSTRACT

Epstein-Barr virus (EBV) is a complex oncogenic symbiont. The molecular mechanisms governing EBV carcinogenesis remain elusive and the functional interactions between virus and host cells are incompletely defined. Here we present a comprehensive map of the host cell-pathogen interactome in EBV-associated cancers. We systematically analyzed RNA sequencing from >1,000 patients with 15 different cancer types, comparing virus and host factors of EBV+ to EBV- tissues. EBV preferentially integrated at highly accessible regions of the cancer genome, with significant enrichment in super-enhancer architecture. Twelve EBV transcripts, including LMP1 and LMP2, correlated inversely with EBV reactivation signature. Overexpression of these genes significantly suppressed viral reactivation, consistent with a "virostatic" function. In cancer samples, hundreds of novel frequent missense and nonsense variations in virostatic genes were identified, and variant genes failed to regulate their viral and cellular targets in cancer. For example, one-third of patients with EBV+ NK/T-cell lymphoma carried two novel nonsense variants (Q322X, G342X) of LMP1 and both variant proteins failed to restrict viral reactivation, confirming loss of virostatic function. Host cell transcriptional changes in response to EBV infection classified tumors into two molecular subtypes based on patterns of IFN signature genes and immune checkpoint markers, such as PD-L1 and IDO1. Overall, these findings uncover novel points of interaction between a common oncovirus and the human genome and identify novel regulatory nodes and druggable targets for individualized EBV and cancer-specific therapies. SIGNIFICANCE: This study provides a comprehensive map of the host cell-pathogen interactome in EBV+ malignancies.See related commentary by Mbulaiteye and Prokunina-Olsson, p. 5917.


Subject(s)
Epstein-Barr Virus Infections , Neoplasms , Gene Expression Profiling , Herpesvirus 4, Human , Humans , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...