Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Nat Prod ; 86(7): 1654-1666, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37458412

ABSTRACT

Artemisia annua is the plant that produces artemisinin, an endoperoxide-containing sesquiterpenoid used for the treatment of malaria. A. annua extracts, which contain other bioactive compounds, have been used to treat other diseases, including cancer and COVID-19, the disease caused by the virus SARS-CoV-2. In this study, a methyl ester derivative of arteannuin B was isolated when A. annua leaves were extracted with a 1:1 mixture of methanol and dichloromethane. This methyl ester was thought to be formed from the reaction between arteannuin B and the extracting solvent, which was supported by the fact that arteannuin B underwent 1,2-addition when it was dissolved in deuteromethanol. In contrast, in the presence of N-acetylcysteine methyl ester, a 1,4-addition (thiol-Michael reaction) occurred. Arteannuin B hindered the activity of the SARS CoV-2 main protease (nonstructural protein 5, NSP5), a cysteine protease, through time-dependent inhibition. The active site cysteine residue of NSP5 (cysteine-145) formed a covalent bond with arteannuin B as determined by mass spectrometry. In order to determine whether cysteine adduction by arteannuin B can inhibit the development of cancer cells, similar experiments were performed with caspase-8, the cysteine protease enzyme overexpressed in glioblastoma. Time-dependent inhibition and cysteine adduction assays suggested arteannuin B inhibits caspase-8 and adducts to the active site cysteine residue (cysteine-360), respectively. Overall, these results enhance our understanding of how A. annua possesses antiviral and cytotoxic activities.


Subject(s)
Artemisinins , COVID-19 , Cysteine Proteases , Humans , Caspase 8/metabolism , Cysteine Proteases/metabolism , Sulfhydryl Compounds/pharmacology , Cysteine/pharmacology , SARS-CoV-2 , Plant Extracts/chemistry , Artemisinins/chemistry
2.
Neural Regen Res ; 18(3): 469-473, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36018148

ABSTRACT

Mechanisms regulating neurogenesis involve broad and complex processes that represent intriguing therapeutic targets in the field of regenerative medicine. One influential factor guiding neural stem cell proliferation and cellular differentiation during neurogenesis are epigenetic mechanisms. We present an overview of epigenetic mechanisms including chromatin structure and histone modifications; and discuss novel roles of two histone modifiers, Ezh2 and Suv4-20h1/Suv4-20h2 (collectively referred to as Suv4-20h), in neurodevelopment and neurogenesis. This review will focus on broadly reviewing epigenetic regulatory components, the roles of epigenetic components during neurogenesis, and potential applications in regenerative medicine.

3.
J Neurochem ; 162(5): 430-443, 2022 09.
Article in English | MEDLINE | ID: mdl-35560167

ABSTRACT

Microglia have been implicated in multiple sclerosis (MS) pathogenesis. The fractalkine receptor CX3CR1 limits the activation of pathogenic microglia and the human polymorphic CX3CR1I249/M280 (hCX3CR1I249/M280 ) variant increases disease progression in models of MS. However, the role of hCX3CR1I249/M280 variant on microglial activation and central nervous system repair mechanisms remains unknown. Therefore, using transgenic mice expressing the hCX3CR1I249/M280 variant, we aimed to determine the contribution of defective CX3CR1 signaling to neuroinflammation and remyelination in the cuprizone model of focal demyelination. Here, we report that mice expressing hCX3CR1I249/M280 exhibit marked demyelination and microgliosis following acute cuprizone treatment. Nanostring gene expression analysis in demyelinated lesions showed that hCX3CR1I249/M280 but not CX3CR1-deficient mice up-regulated the cuprizone-induced gene profile linked to inflammatory, oxidative stress, and phagocytic pathways. Although CX3CR1-deficient (CX3CR1-KO) and fractalkine-deficient (FKN-KO) mice displayed a comparable demyelination and microglial activation phenotype to hCX3CR1I249/M280 mice, only CX3CR1-deficient and CX3CR1-WT mice showed significant myelin recovery 1 week from cuprizone withdrawal. Confocal microscopy showed that hCX3CR1I249/M280 variant inhibits the generation of cells involved in myelin repair. Our results show that defective fractalkine signaling contributes to regional differences in demyelination, and suggest that the CX3CR1 pathway activity may be a key mechanism for limiting toxic gene responses in neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15416.


Subject(s)
Demyelinating Diseases , Remyelination , Animals , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/genetics , Chemokine CX3CL1/metabolism , Cuprizone/metabolism , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Microglia/metabolism , Myelin Sheath , Neuroinflammatory Diseases
4.
FEBS Lett ; 596(3): 294-308, 2022 02.
Article in English | MEDLINE | ID: mdl-34890048

ABSTRACT

The cell fate transition from radial glial-like (RGL) cells to neurons and astrocytes is crucial for development and pathological conditions. Two chromatin repressors-the enhancer of zeste homolog 2 and suppressor of variegation 4-20 homolog-are expressed in RGL cells in the hippocampus, implicating these epigenetic regulators in hippocampal cell fate commitment. Using a double knockout mouse model, we demonstrated that loss of both chromatin repressors in the RGL population leads to deficits in hippocampal development. Single-nuclei RNA-Seq revealed differential gene expression and provided mechanistic insight into how the two chromatin repressors are critical for the maintenance of cycling cells in the dentate gyrus as well as the balance of cell trajectories between neuronal and astroglial lineages.


Subject(s)
Enhancer of Zeste Homolog 2 Protein
5.
J Neurooncol ; 146(1): 1-7, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31853838

ABSTRACT

INTRODUCTION: Multidisciplinary studies for glial tumors has produced an enormous amount of information including imaging, histology, and a large cohort of molecular data (i.e. genomics, epigenomics, metabolomics, proteomics, etc.). The big data resources are made possible through open access that offers great potential for new biomarker or therapeutic intervention via deep-learning and/or machine learning for integrated multi-omics analysis. An equally important effort to define the hallmarks of glial tumors will also advance precision neuro-oncology and inform patient-specific therapeutics. This review summarizes past studies regarding tumor classification, hallmarks of cancer, and hypothetical mechanisms. Leveraging on advanced big data approaches and ongoing cross-disciplinary endeavors, this review also discusses how to integrate multiple layers of big data toward the goal of precision medicine. RESULTS: In addition to basic research of cancer biology, the results from integrated multi-omics analysis will highlight biological processes and potential candidates as biomarkers or therapeutic targets. Ultimately, these collective resources built upon an armamentarium of accessible data can re-form clinical and molecular data to stratify patient-tailored therapy. CONCLUSION: We envision that a comprehensive understanding of the link between molecular signatures, tumor locations, and patients' history will identify a molecular taxonomy of glial tumors to advance the improvements in early diagnosis, prevention, and treatment.


Subject(s)
Big Data , Biomarkers/analysis , Glioma/therapy , Precision Medicine/methods , Epigenomics/methods , Genomics/methods , Glioma/diagnosis , Glioma/genetics , Glioma/metabolism , Humans , Metabolomics/methods , Precision Medicine/trends , Proteomics/methods , Systems Biology
6.
Cell Cycle ; 17(3): 377-389, 2018.
Article in English | MEDLINE | ID: mdl-29433384

ABSTRACT

Histone methyltransferases (HMTs) are present in heterogeneous cell populations within the adult brain including neurogenic niches. Yet the question remains whether loss of HMTs and the resulting changes in histone methylation alter cell fate in a region-specific manner. We utilized stereotaxic injection of Cre recombinant protein into the adult neurogenic niches, the subventricular zone (SVZ) adjacent to the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus. We confirmed that Cre protein was enzymatically active in vivo and recombination events were restricted to the vicinity of injection areas. In this study, we focus on using Cre mediated recombination in mice harboring floxed HMT: enhancer of zeste homolog 2 (EZH2) or suppressor of variegation homolog (Suv4-20h). Injectable Cre protein successfully knocked out either EZH2 or Suv4-20h, allowing assessment of long-term effects in a region-specific fashion. We performed meso-scale imaging and flow cytometry for phenotype analysis and unbiased quantification. We demonstrated that regional loss of EZH2 affects the differentiation paradigm of neural stem progenitor cells as well as the maintenance of stem cell population. We further demonstrated that regional loss of Suv4-20h influences the cell cycle but does not affect stem cell differentiation patterns. Therefore, Cre protein mediated knock-out a given HMT unravel their distinguishable and important roles in adult neurogenic niches. This Cre protein-based approach offers tightly-controlled knockouts in multiple cell types simultaneously for studying diverse regulatory mechanisms and is optimal for region-specific manipulation within complex, heterogeneous brain architectures.


Subject(s)
Aging/physiology , Chromatin/metabolism , Gene Knockout Techniques , Integrases/metabolism , Neurogenesis , Organ Specificity , Recombinant Proteins/metabolism , Animals , Cell Differentiation , Cell Movement , Enhancer of Zeste Homolog 2 Protein/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Homologous Recombination/genetics , Lysine/metabolism , Methylation , Mice , Neurons/metabolism , S Phase
7.
Cell Cycle ; 16(8): 765-775, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28278055

ABSTRACT

Glioblastoma (GBM) is a highly aggressive brain cancer with limited therapeutic options. While efforts to identify genes responsible for GBM have revealed mutations and aberrant gene expression associated with distinct types of GBM, patients with GBM are often diagnosed and classified based on MRI features. Therefore, we seek to identify molecular representatives in parallel with MRI classification for group I and group II primary GBM associated with the subventricular zone (SVZ). As group I and II GBM contain stem-like signature, we compared gene expression profiles between these 2 groups of primary GBM and endogenous neural stem progenitor cells to reveal dysregulation of cell cycle, chromatin status, cellular morphogenesis, and signaling pathways in these 2 types of MRI-classified GBM. In the absence of IDH mutation, several genes associated with metabolism are differentially expressed in these subtypes of primary GBM, implicating metabolic reprogramming occurs in tumor microenvironment. Furthermore, histone lysine methyltransferase EZH2 was upregulated while histone lysine demethylases KDM2 and KDM4 were downregulated in both group I and II primary GBM. Lastly, we identified 9 common genes across large data sets of gene expression profiles among MRI-classified group I/II GBM, a large cohort of GBM subtypes from TCGA, and glioma stem cells by unsupervised clustering comparison. These commonly upregulated genes have known functions in cell cycle, centromere assembly, chromosome segregation, and mitotic progression. Our findings highlight altered expression of genes important in chromosome integrity across all GBM, suggesting a common mechanism of disrupted fidelity of chromosome structure in GBM.


Subject(s)
Brain Neoplasms/classification , Brain Neoplasms/genetics , Glioblastoma/classification , Glioblastoma/genetics , Lateral Ventricles/pathology , Magnetic Resonance Imaging , Brain Neoplasms/pathology , Cell Line, Tumor , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Histones/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Lysine/metabolism , Methylation , Mutation/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Sequence Analysis, RNA
8.
Neuroepigenetics ; 6: 10-25, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27429906

ABSTRACT

Neural stem progenitor cells (NSPCs) in the human subventricular zone (SVZ) potentially contribute to life-long neurogenesis, yet subtypes of glioblastoma multiforme (GBM) contain NSPC signatures that highlight the importance of cell fate regulation. Among numerous regulatory mechanisms, the post-translational methylations onto histone tails are crucial regulator of cell fate. The work presented here focuses on the role of two repressive chromatin marks tri-methylations on histone H3 lysine 27 (H3K27me3) and histone H4 lysine 20 (H4K20me3) in the adult NSPC within the SVZ. To best model healthy human NSPCs as they exist in vivo for epigenetic profiling of H3K27me3 and H4K20me3, we utilized NSPCs isolated from the adult SVZ of baboon brain (Papio anubis) with brain structure and genomic level similar to human. The putative role of H3K27me3 in normal NSPCs predominantly falls into the regulation of gene expression, cell cycle, and differentiation, whereas H4K20me3 is involved in DNA replication/repair, metabolism, and cell cycle. Using conditional knock-out mouse models to diminish Ezh2 and Suv4-20h responsible for H3K27me3 and H4K20me3, respectively, we found that both repressive marks have irrefutable function for cell cycle regulation in the NSPC population. While both EZH2/H3K27me3 and Suv4-20h/H4K20me3 have implication in cancers, our comparative genomics approach between healthy NSPCs and human GBM specimens revealed that substantial sets of genes enriched with H3K27me3 and H4K20me3 in the NSPCs are altered in the human GBM. In sum, our integrated analyses across species highlight important roles of H3K27me3 and H4K20me3 in normal and disease conditions in the context of NSPC.

9.
Front Genet ; 5: 252, 2014.
Article in English | MEDLINE | ID: mdl-25126093

ABSTRACT

Histone 3 Lysine 9 (H3K9) methylation is known to be associated with pericentric heterochromatin and important in genomic stability. In this study, we show that trimethylation at H3K9 (H3K9me3) is enriched in an adult neural stem cell niche- the subventricular zone (SVZ) on the walls of the lateral ventricle in both rodent and non-human primate baboon brain. Previous studies have shown that there is significant correlation between baboon and human regarding genomic similarity and brain structure, suggesting that findings in baboon are relevant to human. To understand the function of H3K9me3 in this adult neurogenic niche, we performed genome-wide analyses using ChIP-Seq (chromatin immunoprecipitation and deep-sequencing) and RNA-Seq for in vivo SVZ cells purified from baboon brain. Through integrated analyses of ChIP-Seq and RNA-Seq, we found that H3K9me3-enriched genes associated with cellular maintenance, post-transcriptional and translational modifications, signaling pathways, and DNA replication are expressed, while genes involved in axon/neuron, hepatic stellate cell, or immune-response activation are not expressed. As neurogenesis progresses in the adult SVZ, cell fate restriction is essential to direct proper lineage commitment. Our findings highlight that H3K9me3 repression in undifferentiated SVZ cells is engaged in the maintenance of cell type integrity, implicating a role for H3K9me3 as an epigenetic mechanism to control cell fate transition within this adult germinal niche.

10.
Sci Rep ; 4: 5371, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24947819

ABSTRACT

Histone 3 lysine 4 trimethylation (H3K4me3) is known to be associated with transcriptionally active or poised genes and required for postnatal neurogenesis within the subventricular zone (SVZ) in the rodent model. Previous comparisons have shown significant correlation between baboon (Papio anubis) and human brain. In this study, we demonstrate that chromatin activation mark H3K4me3 is present in undifferentiated progenitor cells within the SVZ of adult baboon brain. To identify the targets and regulatory role of H3K4me3 within the baboon SVZ, we developed a technique to purify undifferentiated SVZ cells while preserving the endogenous nature without introducing culture artifact to maintain the in vivo chromatin state for genome-wide studies (ChIP-Seq and RNA-Seq). Overall, H3K4me3 is significantly enriched for genes involved in cell cycle, metabolism, protein synthesis, signaling pathways, and cancer mechanisms. Additionally, we found elevated levels of H3K4me3 in the MRI-classified SVZ-associated Glioblastoma Multiforme (GBM), which has a transcriptional profile that reflects the H3K4me3 modifications in the undifferentiated progenitor cells of the baboon SVZ. Our findings highlight the importance of H3K4me3 in coordinating distinct networks and pathways for life-long neurogenesis, and suggest that subtypes of GBM could occur, at least in part, due to aberrant H3K4me3 epigenetic regulation.


Subject(s)
Adult Stem Cells/physiology , Histones/genetics , Lateral Ventricles/physiology , Neural Stem Cells/physiology , Neurogenesis/genetics , Stem Cell Niche/genetics , Adult Stem Cells/cytology , Animals , Cells, Cultured , Chromatin/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation/genetics , Genetic Markers/genetics , Papio anubis , Transcriptional Activation/genetics
11.
Front Oncol ; 3: 182, 2013.
Article in English | MEDLINE | ID: mdl-23875172

ABSTRACT

Glioblastoma multiforme (GBM) is a clinically and pathologically heterogeneous brain tumor. Previous studies of transcriptional profiling have revealed biologically relevant GBM subtypes associated with specific mutations and dysregulated pathways. Here, we applied a modified proteome to uncover abnormal protein expression profile in a MRI-classified group I GBM (GBM1), which has a spatial relationship with one of the adult neural stem cell niches, subventricular zone (SVZ). Most importantly, we identified molecular characteristics in this type of GBM that include up-regulation of metabolic enzymes, ribosomal proteins, and heat shock proteins. As GBM1 often recurs at great distances from the initial lesion, the rewiring of metabolism, and ribosomal biogenesis may facilitate cancer cells' growth and survival during tumor progression. The intimate contact between GBM1 and the SVZ raises the possibility that tumor cells in GBM1 may be most related to SVZ cells. In support of this notion, we found that markers representing SVZ cells are highly expressed in GBM1. Emerged findings from our study provide a specific protein expression profile in GBM1 and offer better prediction or therapeutic implication for this multifocal GBM.

12.
PLoS One ; 4(11): e7839, 2009 Nov 13.
Article in English | MEDLINE | ID: mdl-19915707

ABSTRACT

BACKGROUND: The Myc oncoprotein, a transcriptional regulator involved in the etiology of many different tumor types, has been demonstrated to play an important role in the functions of embryonic stem (ES) cells. Nonetheless, it is still unclear as to whether Myc has unique target and functions in ES cells. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the role of c-Myc in murine ES cells, we mapped its genomic binding sites by chromatin-immunoprecipitation combined with DNA microarrays (ChIP-chip). In addition to previously identified targets we identified genes involved in pluripotency, early development, and chromatin modification/structure that are bound and regulated by c-Myc in murine ES cells. Myc also binds and regulates loci previously identified as Polycomb (PcG) targets, including genes that contain bivalent chromatin domains. To determine whether c-Myc influences the epigenetic state of Myc-bound genes, we assessed the patterns of trimethylation of histone H3-K4 and H3-K27 in mES cells containing normal, increased, and reduced levels of c-Myc. Our analysis reveals widespread and surprisingly diverse changes in repressive and activating histone methylation marks both proximal and distal to Myc binding sites. Furthermore, analysis of bulk chromatin from phenotypically normal c-myc null E7 embryos demonstrates a 70-80% decrease in H3-K4me3, with little change in H3-K27me3, compared to wild-type embryos indicating that Myc is required to maintain normal levels of histone methylation. CONCLUSIONS/SIGNIFICANCE: We show that Myc induces widespread and diverse changes in histone methylation in ES cells. We postulate that these changes are indirect effects of Myc mediated by its regulation of target genes involved in chromatin remodeling. We further show that a subset of PcG-bound genes with bivalent histone methylation patterns are bound and regulated in response to altered c-Myc levels. Our data indicate that in mES cells c-Myc binds, regulates, and influences the histone modification patterns of genes involved in chromatin remodeling, pluripotency, and differentiation.


Subject(s)
Embryonic Stem Cells/cytology , Epigenesis, Genetic , Proto-Oncogene Proteins c-myc/metabolism , Alleles , Animals , Binding Sites , Chromatin/chemistry , Gene Expression Regulation , Histones/chemistry , Immunoprecipitation , Methylation , Mice , Models, Biological , Phenotype
13.
EMBO J ; 28(20): 3157-70, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-19745813

ABSTRACT

Myc proteins are known to have an important function in stem cell maintenance. As Myc has been shown earlier to regulate microRNAs (miRNAs) involved in proliferation, we sought to determine whether c-Myc also affects embryonic stem (ES) cell maintenance and differentiation through miRNAs. Using a quantitative primer-extension PCR assay we identified miRNAs, including, miR-141, miR-200, and miR-429 whose expression is regulated by c-Myc in ES cells, but not in the differentiated and tumourigenic derivatives of ES cells. Chromatin immunoprecipitation analyses indicate that in ES cells c-Myc binds proximal to genomic regions encoding the induced miRNAs. We used expression profiling and seed homology to identify genes specifically downregulated both by these miRNAs and by c-Myc. We further show that the introduction of c-Myc-induced miRNAs into murine ES cells significantly attenuates the downregulation of pluripotency markers on induction of differentiation after withdrawal of the ES cell maintenance factor LIF. In contrast, knockdown of the endogenous miRNAs accelerate differentiation. Our data show that in ES cells c-Myc acts, in part, through a subset of miRNAs to attenuate differentiation.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/metabolism , MicroRNAs/physiology , Proto-Oncogene Proteins c-myc/physiology , Animals , Blotting, Western , Cell Differentiation/genetics , Cell Line , Chromatin Immunoprecipitation , Embryonic Stem Cells/cytology , Immunohistochemistry , Mice , MicroRNAs/genetics , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
14.
Differentiation ; 76(4): 381-91, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17924961

ABSTRACT

The related basic helix-loop-helix transcription factors neurogenin3 (Neurog3) and neurogenic differentiation 1 (NeuroD1) regulate pancreatic islet cell formation. The transient expression of Neurog3 initiates endocrine differentiation and activates its target, NeuroD1, which continues the endocrine differentiation process. Despite their distinct developmental roles, the expression of either factor can drive islet differentiation in progenitor cells. To determine whether Neurog3 and NeuroD1 function by targeting a common set of genes, we compared gene expression patterns in cells ectopically expressing these two factors using cDNA microarrays. The array data demonstrated that both factors regulated largely overlapping sets of genes, providing the molecular basis for their functional equivalence in gain-of-functions approaches. Distinct differences in the timing and level of expression of a subset of target genes, however, show that the functions of these two factors are not completely redundant. Interestingly, in addition to NeuroD1, Neurog3 also induced both NeuroD2 and NeuroD4 gene expression. NeuroD2 mRNA peaked in the embryonic pancreas during endocrine differentiation and induced endocrine differentiation in vitro. These data suggest possible redundant roles for the NeuroD1 paralogs NeuroD2 and NeuroD4 in pancreatic endocrine differentiation and their potential utility in cell-based therapies for diabetes mellitus.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Cell Differentiation/physiology , Nerve Tissue Proteins/physiology , Pancreas/cytology , Animals , Cell Line , Cell Lineage , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
15.
Mol Cell Biol ; 26(11): 4311-5, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16705180

ABSTRACT

Mice lacking neuroD2, a basic helix-loop-helix transcription factor involved in brain development, show growth retardation and other abnormalities consistent with hypothalamic-pituitary-thyroid (HPT) axis dysfunction. neuroD2 is expressed in the paraventricular hypothalamic nuclei, the anterior lobe of pituitary, and the thyroid gland. In neuroD2-deficient mice, thyrotropin-releasing hormone, thyroid-stimulating hormone, and thyroid hormone are decreased in these three regions, respectively. neuroD2-null mice typically die 2 to 3 weeks after birth, but those treated with replacement doses of thyroxine survived more than 8 weeks. These data indicate that neuroD2 is expressed throughout the HPT axis and that all levels of the axis are functionally affected by its absence in mice.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/deficiency , Congenital Hypothyroidism/metabolism , Neuropeptides/deficiency , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Congenital Hypothyroidism/genetics , Hypothalamus/cytology , Hypothalamus/metabolism , Mice , Neuropeptides/genetics , Neuropeptides/metabolism , Pituitary Gland/cytology , Pituitary Gland/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thyroid Gland/cytology , Thyroid Gland/metabolism
16.
Proc Natl Acad Sci U S A ; 102(41): 14877-82, 2005 Oct 11.
Article in English | MEDLINE | ID: mdl-16203979

ABSTRACT

The amygdala is centrally involved in formation of emotional memory and response to fear or risk. We have demonstrated that the lateral and basolateral amygdala nuclei fail to form in neuroD2 null mice and neuroD2 heterozygotes have fewer neurons in this region. NeuroD2 heterozygous mice show profound deficits in emotional learning as assessed by fear conditioning. Unconditioned fear was also diminished in neuroD2 heterozygotes compared to wild-type controls. Several key molecular regulators of emotional learning were diminished in the brains of neuroD2 heterozygotes including Ulip1, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, and GABA(A) receptor. Thus, neuroD2 is essential for amygdala development and genes involved in amygdala function are altered in neuroD2-deficient mice.


Subject(s)
Amygdala/growth & development , Basic Helix-Loop-Helix Transcription Factors/metabolism , Emotions/physiology , Learning/physiology , Neuropeptides/metabolism , Amygdala/metabolism , Animals , Apoptosis/physiology , Basic Helix-Loop-Helix Transcription Factors/genetics , Behavioral Symptoms , Blotting, Western , Chromatin Immunoprecipitation , Heterozygote , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Nerve Tissue Proteins/metabolism , Neuropeptides/genetics
17.
Dev Biol ; 265(1): 234-45, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14697366

ABSTRACT

The basic helix-loop-helix (bHLH) transcription factor, neuroD2, induces neuronal differentiation and promotes neuronal survival. Reduced levels of neuroD2 were previously shown to cause motor deficits, ataxia, and seizure propensity. Because neuroD2 levels may be critical for brain function, we studied the regulation of neuroD2 gene in cell culture and transgenic mouse models. In transgenic mice, a 10-kb fragment of the neuroD2 promoter fully recapitulated the endogenous neuroD2 staining pattern. A 1-kb fragment of the neuroD2 promoter drove reporter gene expression in most, but not all neuroD2-positive neuronal populations. Mutation of two critical E-boxes, E4 and E5 (E4 and E5 situated 149 and 305 bp upstream of the transcriptional start site) eliminated gene expression. NeuroD2 expression was diminished in mice lacking neurogenin1 demonstrating that neurogenin1 regulates neuroD2 during murine brain development. These studies demonstrate that neuroD2 expression is highly dependent on bHLH-responsive E-boxes in the proximal promoter region, that additional distal regulatory elements are important for neuroD2 expression in a subset of cortical neurons, and that neurogenin1 regulates neuroD2 expression during mouse brain development.


Subject(s)
Brain/embryology , Gene Expression Regulation, Developmental , Neurons/physiology , Neuropeptides/physiology , Transcription Factors/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors , Blotting, Southern , DNA Mutational Analysis , DNA Primers , E-Box Elements/physiology , Electrophoretic Mobility Shift Assay , Embryo, Mammalian , Galactosides , Histological Techniques , Immunohistochemistry , Indoles , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...