Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 362(6420): 1271-1275, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30545882

ABSTRACT

Cuprate superconductors have long been thought of as having strong electronic correlations but negligible spin-orbit coupling. Using spin- and angle-resolved photoemission spectroscopy, we discovered that one of the most studied cuprate superconductors, Bi2212, has a nontrivial spin texture with a spin-momentum locking that circles the Brillouin zone center and a spin-layer locking that allows states of opposite spin to be localized in different parts of the unit cell. Our findings pose challenges for the vast majority of models of cuprates, such as the Hubbard model and its variants, where spin-orbit interaction has been mostly neglected, and open the intriguing question of how the high-temperature superconducting state emerges in the presence of this nontrivial spin texture.

2.
ACS Nano ; 11(5): 4686-4693, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28437062

ABSTRACT

Charge transfer at the interface between dissimilar materials is at the heart of electronics and photovoltaics. Here we study the molecular orientation, electronic structure, and local charge transfer at the interface region of C60 deposited on graphene, with and without supporting substrates such as hexagonal boron nitride. We employ ab initio density functional theory with van der Waals interactions and experimentally characterize interface devices using high-resolution transmission electron microscopy and electronic transport. Charge transfer between C60 and the graphene is found to be sensitive to the nature of the underlying supporting substrate and to the crystallinity and local orientation of the C60. Even at room temperature, C60 molecules interfaced to graphene are orientationally locked into position. High electron and hole mobilities are preserved in graphene with crystalline C60 overlayers, which has ramifications for organic high-mobility field-effect devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...