Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biomed ; 4(1): 37, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37907779

ABSTRACT

Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive system, and represents a severe threat to the life and health of individuals. Increasing evidence supports the role of small nucleolar RNAs (snoRNAs) as critical regulatory gene in cancer development. Small Cajal body-specific RNAs (scaRNAs), a subtype of snoRNAs, are named for their subcellular localization within Cajal bodies. SCARNA12, which located at the intronic region of PHB2 in chromosome 12p13.31 with 270 nucleotides (nt) in length. It has been reported function as a diagnostic marker for cervical cancer. However, its biological functions and molecular mechanisms in CRC have yet to be elucidated. In this study, bioinformatics analysis revealed that SCARNA12 was highly expressed in CRC and positively correlated with poor prognosis in CRC patients. Additionally, SCARNA12 showed upregulated expression in CRC cell lines and clinical CRC tissue samples. Moreover, SCARNA12 overexpression in SW620 cells accelerated cell proliferation, suppressed the apoptosis rate, and enhanced tumorigenesis in vivo. The knockdown of SCARNA12 expression in HCT116 and HT29 cells resulted in contrasting effects. The functioning of SCARNA12 is mechanically independent of its host gene PHB2. Notably, the overexpression of SCARNA12 activated PI3K/AKT pathway in SW620 cells, and the malignancy degree of CRC cells was attenuated after treatment with MK2206 (a specific AKT inhibitor). Our findings demonstrated that SCARNA12 plays an oncogenic role in CRC progression and can be used as a potential diagnostic biomarker for CRC.

2.
Cell Biol Toxicol ; 39(4): 1377-1394, 2023 08.
Article in English | MEDLINE | ID: mdl-36087186

ABSTRACT

Colorectal cancer (CRC) is a common malignant cancer worldwide. Although the molecular mechanism of CRC carcinogenesis has been studied extensively, the details remain unclear. Small nucleolar RNAs (snoRNAs) have recently been reported to have essential functions in carcinogenesis, although their roles in CRC pathogenesis are largely unknown. In this study, we found that the H/ACA snoRNA SNORA24 was upregulated in various cancers, including CRC. SNORA24 expression was significantly associated with age and history of colon polyps in CRC patient cohorts, with high expression associated with a decreased 5-year overall survival. Our results indicated that the oncogenic function of SNORA24 is mediated by promoting G1/S phase transformation, cell proliferation, colony formation, and growth of xenograft tumors. Furthermore, SNORA24 knockdown induced massive apoptosis. RNA-sequencing and gene ontology (GO) enrichment analyses were performed to explore its downstream targets. Finally, we confirmed that SNORA24 regulates p53 protein stability in a proteasomal degradation pathway. Our study clarifies the oncogenic role of SNORA24 in CRC and advance the current model of the role of the p53 pathway in this process.


Subject(s)
Colorectal Neoplasms , RNA, Small Nucleolar , Humans , RNA, Small Nucleolar/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Carcinogenesis/genetics , Colorectal Neoplasms/pathology , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics
3.
Dose Response ; 18(2): 1559325820936906, 2020.
Article in English | MEDLINE | ID: mdl-32636722

ABSTRACT

DNA is subject to a range of endogenous and exogenous insults that can impair DNA replication and lead to DNA double-strand breaks (DSBs). The repair capacity of cancer cells mediates their radiosensitivity, but the roles of miR-1587 during radiation resistance are poorly characterized. In this study, we explored whether miR-1587 regulates the growth and radiosensitivity of colorectal cancer (CRC) cells through its ability to regulate DNA Ligase4 (LIG4). We found that CRC cells in which miR-1587 was overexpressed inhibited cell growth and promoted apoptosis through increasing DSBs and promoting cell cycle arrest. We found that overexpression of miR-1587 significantly inhibited LIG4 messenger RNA and protein expression and further revealed the ability of miR-1587 to directly bind to the LIG4-3'-untranslated region through dual-luciferase reporter assays. More notably, miR-1587 mimics increased the radiosensitivity of CRC cells. Taken together, we show that miR-1587 overexpression enhances the formation of DSBs, arrests CRC cell growth, and enhances the radiosensivity of CRC cells through the direct repression of LIG4 expression. These results reveal novel roles for miR-1587 during DNA damage repair and the radiosensivity of CRC cells. This highlights miR-1587 as a novel therapeutic target for CRC.

4.
Appl Environ Microbiol ; 83(16)2017 08 15.
Article in English | MEDLINE | ID: mdl-28576762

ABSTRACT

While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells.IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions.


Subject(s)
Copper/metabolism , Escherichia coli/metabolism , Iron/metabolism , Sulfur/metabolism , Anaerobiosis , Copper/toxicity , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...