Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36676318

ABSTRACT

In this study, we propose and simulate the design of a non-regrowth staircase channel GaN vertical trench transistor, demonstrating an exceptional threshold and breakdown characteristic for high power and high frequency applications. The unique staircase design provides a variable capacitance through the gate-dielectric-semiconductor interface, which results in a high breakdown voltage of 1.52 kV and maintains a channel on-resistance of 2.61 mΩ∙cm2. Because of the variable length and doping profile in the channel region, this model offers greater flexibility to meet a wide range of device application requirements.

2.
Opt Lett ; 46(20): 5189-5192, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34653148

ABSTRACT

Traditional visible light communication (VLC) via light-emitting diodes (LEDs) employs the on-off keying (OOK) modulation scheme. Even though optical frequency modulation has many advantages, it is hardly used for LED VLC because a high carrier frequency cannot be applied to the LED cavity due to the resistance-capacitance limit. Here, by monolithically integrating an LED with an integrated digital transducer, we experimentally demonstrate the intermixing of gigahertz surface acoustic waves and electrical data signals in the LED cavity at room temperature. An optical transmitter was realized by in situ frequency up-conversion of the data signals from an LED, which has the advantages of improving transmission performance by up-shifting the data spectrum away from low-frequency noise. Our proposed integrated acousto-optic transducer opens a new developing scheme on the frequency up-mixed data encoding of an LED beyond its inherent modulation bandwidth for future VLC.

3.
Sci Rep ; 9(1): 207, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30659221

ABSTRACT

The multifunctional hard X-ray nanoprobe at Taiwan Photon Source (TPS) exhibits the excellent ability to simultaneously characterize the X-ray absorption, X-ray excited optical luminescence (XEOL) as well as the dynamics of XEOL of materials. Combining the scanning electron microscope (SEM) into the TPS 23A end-station, we can easily and quickly measure the optical properties to map out the morphology of a ZnO microrod. A special phenomenon has been observed that the oscillations in the XEOL associated with the confinement of the optical photons in the single ZnO microrod shows dramatical increase while the X-ray excitation energy is set across the Zn K-edge. Besides having the nano-scale spatial resolution, the synchrotron source also gives a good temporal domain measurement to investigate the luminescence dynamic process. The decay lifetimes of different emission wavelengths and can be simultaneously obtained from the streak image. Besides, SEM can provide the cathodoluminescence (CL) to be a complementary method to analyze the emission properties of materials, we anticipate that the X-ray nanoprobe will open new avenues with great characterization ability for developing nano/microsized optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...