Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(6): e16612, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37332963

ABSTRACT

Background and objectives: Traditional Chinese Medicine (TCM) is a therapeutic system which has been practiced for thousands of years. Although for much of its history the decoction of medicinal herbs was the most common method of consuming the herbal treatments, TCM prescriptions are now primarily prepared using concentrated Chinese herbal extracts (CCHE) in powder or granular form. However, determining the precise dose of each single Chinese herbal constituent within a prescription creates a challenge in clinical practice due to the potential risk of toxicity. To alleviate this, we invented the Chinese Intelligence Prescription System (CIPS) to calculate the exact dose of each single herb within an individual prescription. Methods: In this study, we applied CIPS in a real-world setting to analyze clinical prescriptions collected and prepared at the TCM Pharmacy of China Medical University Hospital (CMUH). Results: Our investigation revealed that 3% of all prescriptions filled in a 1-month period contained inexact dosages, suggesting that more than 170,000 prescriptions filled in Taiwan in a given month may contain potentially toxic components. We further analyzed the data to determine the excess dosages and outline the possible associated side effects. Conclusions: In conclusion, CIPS offers TCM practitioners the ability to prepare exact Chinese herbal medicine (CHM) prescriptions in order to avoid toxic effects, thereby ensuring patient safety.

2.
Thorac Cancer ; 12(4): 468-474, 2021 02.
Article in English | MEDLINE | ID: mdl-33398925

ABSTRACT

BACKGROUND: Identification of small pulmonary nodules is challenging in a limited intrathoracic field during minimally invasive video-assisted thoracoscopic surgery (VATS), and preoperative localization is required. Various techniques have been reported with some failure and complications. Here, we compare the feasibility and safety between electromagnetic navigation bronchoscopic marking and computed tomography (CT)-guided percutaneous marking using indocyanine green (ICG) and iopamidol. METHODS: A total of 47 patients with small-sized pulmonary nodules, scheduled to undergo video-assisted thoracoscopic limited resection, were enrolled in this study. A mixture of diluted ICG and iopamidol was injected into the lung parenchyma as a marker, using CT-guided percutaneous or electromagnetic navigation bronchoscopic injection techniques and the results were examined and compared. RESULTS: A total of 35 and 12 patients underwent preoperative marking by percutaneous injection and electromagnetic navigation bronchoscopic injection, respectively, in which a marker was detected in 33/35 (94.3%) and 12/12 (100%) patients. No combination of these procedures was performed in any patient. All markers were successfully detected in three patients who underwent injection marking at two different lesion sites. Pneumothorax occurred in five patients (14%) in the percutaneous marking group, which was relieved in all patients without the necessity for chest tube drainage. No other complication was observed in this study. CONCLUSIONS: Electromagnetic navigation bronchoscopic injection techniques using indocyanine green fluorescence plus iopamidol are safe and effective, and comparable with CT-guided localization. Furthermore, a bronchoscopic approach enables marking of multiple lesion areas without increasing patient risk, especially for puncture-related pneumothorax. KEY POINTS: SIGNIFICANT FINDINGS OF THE STUDY: Either computed tomography (CT)-guided percutaneous or electromagnetic navigation bronchoscopic injection techniques can be used for preoperative marking of pulmonary nodules with indocyanine green (ICG) fluorescence. WHAT THIS STUDY ADDS: Indocyanine green (ICG) is a safe and easily detectable fluorescent marker for video-assisted thoracoscopic surgery (VATS). A bronchoscopic injection approach enables marking of multiple lesion areas without increasing the risk of pneumothorax.


Subject(s)
Bronchoscopy/methods , Multiple Pulmonary Nodules/diagnostic imaging , Thoracic Surgery, Video-Assisted/methods , Thoracoscopy/methods , Tomography, X-Ray Computed/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Multiple Pulmonary Nodules/pathology
3.
J Proteome Res ; 14(11): 4907-20, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26452990

ABSTRACT

Drug resistance is one of the major causes of cancer chemotherapy failure. In the current study, we used a pair of lung adenocarcinoma cell lines, A549 and the pemetrexed-resistant A549/PEM cells, as a model to monitor resistance-dependent cellular responses and identify potential therapeutic targets. By means of 2D differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), we investigated the global protein expression alterations induced by pemetrexed treatment and resistance. The proteomic result revealed that pemetrexed exposure obviously altered the expression of 81 proteins in the A549 cells, whereas no significant response was observed in the similarly treated A549/PEM cells, hence implying an association between these proteins and the drug-specific response. Moreover, 72 proteins including flavin reductase and calreticulin demonstrated differential expression between the A549 and A549/PEM cells, indicating baseline resistance. Additional tests employed siRNA silencing, protein overexpression, cell viability analysis, and analysis of apoptosis to examine and confirm the potency of flavin reductase and calreticulin proteins in the development of pemetrexed resistance. In summary, by using a proteomic approach, we identified numerous proteins, including flavin reductase and calreticulin, involved in pemetrexed drug resistance-developing mechanisms. Our results provide useful diagnostic markers and therapeutic candidates for pemetrexed-resistant lung cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Calreticulin/isolation & purification , FMN Reductase/isolation & purification , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/genetics , Pemetrexed/pharmacology , Proteome/isolation & purification , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Apoptosis/drug effects , Calreticulin/genetics , Calreticulin/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm/genetics , Electrophoresis, Gel, Two-Dimensional , FMN Reductase/genetics , FMN Reductase/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Proteome/genetics , Proteome/metabolism , Proteomics/methods , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
4.
J Cell Mol Med ; 19(4): 744-59, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25639359

ABSTRACT

Mitochondria are key organelles in mammary cells in responsible for a number of cellular functions including cell survival and energy metabolism. Moreover, mitochondria are one of the major targets under doxorubicin treatment. In this study, low-abundant mitochondrial proteins were enriched for proteomic analysis with the state-of-the-art two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assistant laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) strategy to compare and identify the mitochondrial protein profiling changes in response to the development of doxorubicin resistance in human uterine cancer cells. The mitochondrial proteomic results demonstrate more than fifteen hundred protein features were resolved from the equal amount pooled of three purified mitochondrial proteins and 101 differentially expressed spots were identified. In which, 39 out of these 101 identified proteins belong to mitochondrial proteins. Mitochondrial proteins such as acetyl-CoA acetyltransferase (ACAT1) and malate dehydrogenase (MDH2) have not been reported with the roles on the formation of doxorubicin resistance in our knowledge. Further studies have used RNA interference and cell viability analysis to evidence the essential roles of ACAT1 and MDH2 on their potency in the formation of doxorubicin resistance through increased cell viability and decreased cell apoptosis during doxorubicin treatment. To sum up, our current mitochondrial proteomic approaches allowed us to identify numerous proteins, including ACAT1 and MDH2, involved in various drug-resistance-forming mechanisms. Our results provide potential diagnostic markers and therapeutic candidates for the treatment of doxorubicin-resistant uterine cancer.


Subject(s)
Acetyl-CoA C-Acetyltransferase/metabolism , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Malate Dehydrogenase/metabolism , Mitochondrial Proteins/metabolism , Proteome/metabolism , Acetyl-CoA C-Acetyltransferase/genetics , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Immunoblotting , Malate Dehydrogenase/genetics , Mitochondrial Proteins/genetics , Proteome/genetics , Proteomics/methods , RNA Interference , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology
5.
Pharmacol Res ; 90: 1-17, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25242635

ABSTRACT

Drug resistance is a frequent cause of failure in cancer chemotherapy treatments. In this study, a pair of uterine sarcoma cancer lines, MES-SA, and doxorubicin-resistant partners, MES-SA/DxR-2µM cells and MES-SA/DxR-8µM cells, as a model system to investigate resistance-dependent proteome alterations and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to perform this research and the results revealed that doxorubicin-resistance altered the expression of 208 proteins in which 129 identified proteins showed dose-dependent manners in response to the levels of resistance. Further studies have used RNA interference, H2A.X phosphorylation assay, cell viability analysis, and analysis of apoptosis against reticulocalbin-1 (RCN1) proteins, to prove its potency on the formation of doxorubicin resistance as well as the attenuation of doxorubicin-associated DNA double strand breakage. To sum up, our results provide useful diagnostic markers and therapeutic candidates such as RCN1 for the treatment of doxorubicin-resistant uterine cancer.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Calcium-Binding Proteins/metabolism , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/physiology , Uterine Neoplasms/metabolism , Apoptosis/drug effects , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Down-Regulation/drug effects , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Proteome , RNA, Small Interfering/administration & dosage , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Up-Regulation/drug effects
6.
Mol Biosyst ; 10(12): 3086-100, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25259860

ABSTRACT

Rhein is a natural product purified from herbal plants such as Rheum palmatum, which has been shown to have anti-angiogenesis and anti-tumor metastasis properties. However, the biological effects of rhein on the behavior of breast cancers are not completely elucidated. To evaluate whether rhein might be useful in the treatment of breast cancer and its cytotoxic mechanism, we analyzed the impact of rhein treatment on differential protein expression as well as redox regulation in a non-invasive breast cancer cell line, MCF-7, and an invasive breast cancer cell line, MDA-MB-231, using lysine- and cysteine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF mass spectrometry. This proteomic study revealed that 73 proteins were significantly changed in protein expression; while 9 proteins were significantly altered in thiol reactivity in both MCF-7 and MDA-MB-231 cells. The results also demonstrated that rhein-induced cytotoxicity in breast cancer cells mostly involves dysregulation of cytoskeleton regulation, protein folding, the glycolysis pathway and transcription control. A further study also indicated that rhein promotes misfolding of cellular proteins as well as unbalancing of the cellular redox status leading to ER-stress. Our work shows that the current proteomic strategy offers a high-through-put platform to study the molecular mechanisms of rhein-induced cytotoxicity in breast cancer cells. The identified differentially expressed proteins might be further evaluated as potential targets in breast cancer therapy.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Anthraquinones/pharmacology , Endoplasmic Reticulum Stress/drug effects , Acetylcysteine/pharmacology , Breast Neoplasms , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , MCF-7 Cells , Oxidation-Reduction/drug effects , Proteomics , Reactive Oxygen Species/metabolism , Reproducibility of Results , Rheum/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Two-Dimensional Difference Gel Electrophoresis
SELECTION OF CITATIONS
SEARCH DETAIL
...