Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(9): e2306876, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37899660

ABSTRACT

Nanorobots capable of active movement are an exciting technology for targeted therapeutic intervention. However, the extensive motion range and hindrance of the blood-brain barrier impeded their clinical translation in glioblastoma therapy. Here, a marsupial robotic system constructed by integrating chemical/magnetic hybrid nanorobots (child robots) with a miniature magnetic continuum robot (mother robot) for intracranial cross-scale targeting drug delivery is reported. For primary targeting on macroscale, the continuum robot enters the cranial cavity through a minimally invasive channel (e.g., Ommaya device) in the skull and transports the nanorobots to pathogenic regions. Upon circumventing the blood-brain barrier, the released nanorobots perform secondary targeting on microscale to further enhance the spatial resolution of drug delivery. In vitro experiments against primary glioblastoma cells derived from different patients are conducted for personalized treatment guidance. The operation feasibility within organisms is shown in ex vivo swine brain experiments. The biosafety of the treatment system is suggested in in vivo experiments. Owing to the hierarchical targeting method, the targeting rate, targeting accuracy, and treatment efficacy have improved greatly. The marsupial robotic system offers a novel intracranial local therapeutic strategy and constitutes a key milestone in the development of glioblastoma treatment platforms.


Subject(s)
Glioblastoma , Marsupialia , Robotic Surgical Procedures , Child , Humans , Animals , Swine , Glioblastoma/drug therapy , Drug Delivery Systems , Skull
2.
Soft Robot ; 10(1): 119-128, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35482290

ABSTRACT

Soft actuators have received extensive attention in the fields of soft robotics, biomedicine, and intelligence systems owing to their advantages of pliancy, silence, and essential safety. However, most existing soft actuators have only single actuation elements and lack sensing. Therefore, it is difficult for them to perform complex motions with multiple degrees of freedom (multi-DOFs) and high precision. This article reports a miniature columnar dielectric elastomer actuator (DEA) with multi-DOF actuation and sensing, which was fabricated with an electroactive polymer acrylic film (Very High Bond [VHB] acrylic film by 3M Company) and carbon black grease electrodes. The arrangement of the simulation electrodes on the VHB was optimized to realize multi-DOF actuation, and the sensing electrodes were configured on the outer part of the DEA to realize real-time sensing. The results showed that the soft actuator can achieve all-round actuation through the selective power of the stimulation electrodes with a controllable voltage. The maximum bending angle and axial strain of the actuator reached 50° and 13%, respectively. Moreover, the deformation modes, direction, and quantity could be precisely measured using the integrative sensing function. In addition, to demonstrate the advantages of the proposed actuator, a manipulator with multiple actuators was designed and controlled to realize different actions of screwing and grasping with sensing. This research is useful not only for the design of multifunctional soft actuators but also for the development of soft robots with flexible, complex, and precisely controllable motions.

3.
Acta Biomater ; 154: 443-453, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36243369

ABSTRACT

Targeted delivery is a promising mean for various biomedical applications, and various micro/nano robots have been created for drug delivery. Mesoporous silica has been shown to be successful as a drug delivery carrier in numerous studies. However, mesoporous silica preparation usually requires expensive and toxic chemicals, which limits its biomedical applications. Diatoms, as the naturally porous silica structure, are promising substitutes for the artificial mesoporous silica preparation. However, the current studies utilizing intact diatom frustules as drug delivery packets lack flexible and controllable locomotion. Herein, we propose a biohybrid magnetic microrobot based on Thalassiosira weissflogii frustules (TWFs) as a cargo packet for targeted drug delivery using a simple preparation method. Biohybrid microrobots are fabricated in large quantities by attaching magnetic nanoparticles (Fe3O4) to the surface of diatoms via electrostatic adsorption. Biohybrid microrobots are agile and controllable under the influence of external magnetic fields. They could be precisely controlled to follow specific trajectories or to move as swarms. The cooperation of the two motion modes of the biohybrid microrobots increased microrobots' environmental adaptability. Microrobots have a high drug-loading capacity and pH-sensitive drug release. In vitro cancer cell experiments further demonstrated the controllability of diatom microrobots for targeted drug delivery. The biohybrid microrobots reported in this paper convert natural diatoms into cargo packets for biomedical applications, which possess active and controllable properties and show huge potential for targeted anticancer therapy. STATEMENT OF SIGNIFICANCE: In this study, diatoms with good biocompatibility were used to prepare biohybrid magnetic microrobots. Compared with the current diatom-based systems for drug delivery, the microrobots prepared in this study for targeted drug delivery have more flexible motion characteristics and exhibit certain swarming behaviors. Under the same magnetic field strength, by changing the magnetic field frequency, the movement state of the diatoms can be changed to pass through the narrow channel, so that it has better environmental adaptability.


Subject(s)
Diatoms , Drug Liberation , Diatoms/chemistry , Drug Delivery Systems/methods , Drug Carriers/chemistry , Silicon Dioxide/chemistry , Hydrogen-Ion Concentration
4.
ACS Nano ; 16(9): 14895-14906, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36067035

ABSTRACT

Superhydrophobic microrobots that can swim efficiently and rapidly on water under the action of external stimuli have attracted significant research attention for various applications. However, most studies on superhydrophobic microrobots have focused on single-stimulus driving modes, which limit the motion and functional applications of microrobots in complex aquatic environments. Therefore, multistimuli-responsive superhydrophobic microrobots that are capable of drifting rapidly on water through light, magnetic, and chemical control were developed in this study. The stability and environmental adaptability of the microrobots were systematically investigated. The microrobots achieved programmable trajectory motion on water, particularly complex motions such as circular, spiral, and helical movements under the coupled influence of chemical and magnetic fields. Importantly, the motion and control of multimicrorobots can be realized by combining control methods. Under the action of light and magnetic field, multimicrorobots could realize cooperative movement and completed the transportation of cargo. Additionally, broad multifunctional applications of the microrobots were explored in terms of oil spill recovery and solution mix. This study provides a method for the preparation and development of superhydrophobic microrobots with multistimuli-responsive characteristics.


Subject(s)
Magnetic Fields , Magnetics , Hydrophobic and Hydrophilic Interactions , Motion , Water
5.
Adv Sci (Weinh) ; 9(12): e2103902, 2022 04.
Article in English | MEDLINE | ID: mdl-35224895

ABSTRACT

With the rapid evolution of microelectronics and nanofabrication technologies, the feature sizes of large-scale integrated circuits continue to move toward the nanoscale. There is a strong need to improve the quality and efficiency of integrated circuit inspection, but it remains a great challenge to provide both rapid imaging and circuit node-level high-resolution images simultaneously using a conventional microscope. This paper proposes a nondestructive, high-throughput, multiscale correlation imaging method that combines atomic force microscopy (AFM) with microlens-based scanning optical microscopy. In this method, a microlens is coupled to the end of the AFM cantilever and the sample-facing side of the microlens contains a focused ion beam deposited tip which serves as the AFM scanning probe. The introduction of a microlens improves the imaging resolution of the AFM optical system, providing a 3-4× increase in optical imaging magnification while the scanning imaging throughput is improved ≈8×. The proposed method bridges the resolution gap between traditional optical imaging and AFM, achieves cross-scale rapid imaging with micrometer to nanometer resolution, and improves the efficiency of AFM-based large-scale imaging and detection. Simultaneously, nanoscale-level correlation between the acquired optical image and structure information is enabled by the method, providing a powerful tool for semiconductor device inspection.


Subject(s)
Microscopy, Atomic Force , Microscopy, Atomic Force/methods
6.
ACS Appl Mater Interfaces ; 12(51): 57587-57597, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33301292

ABSTRACT

Industrial robots have been widely used for manufacturing and assembly in factories. However, at the microscale, most assembly technologies can only pattern the micromodules together loosely and can hardly combine the micromodules to directly form an entity that cannot be easily dispersed. In this study, surface bubbles are made to function as microrobots on a chip. These microrobots can move, fix, lift, and drop microparts and integratively assemble them into a tightly connected entity. As an example, the assembly of a pair of microparts with dovetails is considered. A jacklike bubble robot is used to lift and drop a micropart with a tail, whereas a mobile microrobot is used to push the other micropart with the corresponding socket to the proper position so that the tail can be inserted into the socket. The assembled microparts with the tail-socket joint can move as an entity without separation. Similarly, different types of parts are integratively assembled to form various structures such as gears, snake-shaped chains, and vehicles, which are then driven by bubble microrobots to perform different forms of movement. This assembly technology is simple and efficient and is expected to play an important role in micro-operation, modular assembly, and tissue engineering.

7.
Biomed Microdevices ; 21(1): 15, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30741351

ABSTRACT

Female anglerfishes have a lantern-shape luminous organ sprouting from the middle of their heads to lure their prey in the dark deep sea. Inspired by the anglerfish, we designed an electromagnetic anglerfish-shaped millirobot that can receive energy and transform it into light to attract algae cells to specific locations. The small wireless powered robot can receive about 658 mW of power from external energy supply coils, and light LEDs (light-emitting diodes). The wireless power generation and moving control of the robot are analyzed systematically. Transmitting electric energy to smaller scale receivers to endow milli or micro robots with wireless power function is an interesting and promising research direction. With this function, the wireless powered robot is expected to be extensively used at the small scale in the near future, such as to provide electricity to drive microdevices (microgrippers, microsensors, etc.), provide light or heat in small-scale space, stimulate/kill pathological cells in minimally invasive treatment and so on.


Subject(s)
Electric Power Supplies , Electromagnetic Fields , Robotics , Wireless Technology , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...