Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38152698

ABSTRACT

Due to the absence of in-enclave isolation, today's trusted execution environment (TEE), specifically Intel's Software Guard Extensions (SGX), does not have the capability to securely run different users' tasks within a single enclave, which is required for supporting real-world services, such as an in-enclave machine learning model that classifies the data from various sources, or a microservice (e.g., data search) that performs a very small task (within sub-seconds) for a user and therefore cannot afford the resources and the delay for creating a separate enclave for each user. To address this challenge, we developed Liveries, a technique that enables lightweight, verifiable in-enclave user isolation for protecting time-sharing services. Our approach restricts an in-enclave thread's privilege when configuring an enclave, and further performs integrity check and sanitization on critical enclave data upon user switches. For this purpose, we developed a novel technique that ensures the protection of sensitive user data (e.g., session keys) even in the presence of the adversary who may have compromised the enclave. Our study shows that the new technique is lightweight (1% overhead) and verifiable (about 3200 lines of code), making a step towards assured protection of real-world in-enclave services.

2.
IEEE Trans Cybern ; 45(11): 2546-57, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25546869

ABSTRACT

Face clustering is a key component either in image managements or video analysis. Wild human faces vary with the poses, expressions, and illumination changes. All kinds of noises, like block occlusions, random pixel corruptions, and various disguises may also destroy the consistency of faces referring to the same person. This motivates us to develop a robust face clustering algorithm that is less sensitive to these noises. To retain the underlying structured information within facial images, we use tensors to represent faces, and then accomplish the clustering task based on the tensor data. The proposed algorithm is called robust tensor clustering (RTC), which firstly finds a lower-rank approximation of the original tensor data using a L1 norm optimization function. Because L1 norm does not exaggerate the effect of noises compared with L2 norm, the minimization of the L1 norm approximation function makes RTC robust. Then, we compute high-order singular value decomposition of this approximate tensor to obtain the final clustering results. Different from traditional algorithms solving the approximation function with a greedy strategy, we utilize a nongreedy strategy to obtain a better solution. Experiments conducted on the benchmark facial datasets and gait sequences demonstrate that RTC has better performance than the state-of-the-art clustering algorithms and is more robust to noises.


Subject(s)
Cluster Analysis , Face/anatomy & histology , Image Processing, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Algorithms , Female , Humans , Male
3.
IEEE Trans Cybern ; 44(5): 644-54, 2014 May.
Article in English | MEDLINE | ID: mdl-23797312

ABSTRACT

Symmetry as an intrinsic shape property is often observed in natural objects. In this paper, we discuss how explicitly taking into account the symmetry constraint can enhance the quality of foreground object extraction. In our method, a symmetry foreground map is used to represent the symmetry structure of the image, which includes the symmetry matching magnitude and the foreground location prior. Then, the symmetry constraint model is built by introducing this symmetry structure into the graph-based segmentation function. Finally, the segmentation result is obtained via graph cuts. Our method encourages objects with symmetric parts to be consistently extracted. Moreover, our symmetry constraint model is applicable to weak symmetric objects under the part-based framework. Quantitative and qualitative experimental results on benchmark datasets demonstrate the advantages of our approach in extracting the foreground. Our method also shows improved results in segmenting objects with weak, complex symmetry properties.


Subject(s)
Image Processing, Computer-Assisted/methods , Algorithms , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...