Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 673: 647-656, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38901355

ABSTRACT

Monodisperse nanoparticles of biodegradable polyhydroxyalkanoates (PHAs) polymers, copolymers of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB), are synthesized using a membrane-assisted emulsion encapsulation and evaporation process for biomedical resorbable adhesives. The precise control over the diameter of these PHA particles, ranging from 100 nm to 8 µm, is achieved by adjusting the diameter of emulsion or the PHA concentration. Mechanical properties of the particles can be tailored based on the 3HB to 4HB ratio and molecular weight, primarily influenced by the level of crystallinity. These monodisperse PHA particles in solution serve as adhesives for hydrogel systems, specifically those based on poly(N, N-dimethylacrylamide) (PDMA). Semi-crystalline PHA nanoparticles exhibit stronger adhesion energy than their amorphous counterparts. Due to their self-adhesiveness, adhesion energy increases even when those PHA nanoparticles form multilayers between hydrogels. Furthermore, as they degrade and are resorbed into the body, the PHA nanoparticles demonstrate efficacy in in vivo wound closure, underscoring their considerable impact on biomedical applications.

2.
Carbohydr Polym ; 299: 120172, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36876787

ABSTRACT

The stickiest natural polysaccharide, levan, plays a role in metalloproteinase activation, which is an important step involved in the healing of injured tissue. However, levan is easily diluted, washed away, and loses adhesion in wet environments, which limits its biomedical applications. Herein, we demonstrate a strategy for fabricating a levan-based adhesive hydrogel for hemostatic and wound healing applications by conjugating catechol to levan. Prepared hydrogels exhibit significantly improved water solubilities, and adhesion strengths to hydrated porcine skin of up to 42.17 ± 0.24 kPa which is more than three-times that of fibrin glue adhesive. The hydrogels also promote rapid blood clotting and significantly faster healing of rat-skin incisions compared to nontreated samples. In addition, levan-catechol exhibited an immune response close to that of the negative control, which is ascribable to its significantly lower endotoxin level compared to native levan. Overall, levan-catechol hydrogels are promising materials for hemostatic and wound healing applications.


Subject(s)
Bivalvia , Hemostatics , Swine , Animals , Rats , Wound Healing , Fructans , Catechols , Hydrogels
SELECTION OF CITATIONS
SEARCH DETAIL
...