Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 11(4): 443-451, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32064048

ABSTRACT

There is a compelling need for new therapeutic strategies for glioblastoma multiforme (GBM). Preclinical target and therapeutic discovery for GBMs is primarily conducted using cell lines grown in serum-containing media, such as U-87 MG, which do not reflect the gene expression profiles of tumors found in GBM patients. To address this lack of representative models, we sought to develop a panel of patient-derived GBM models and characterize their genomic features, using RNA sequencing (RNA-seq) and growth characteristics, both when grown as neurospheres in culture, and grown orthotopically as xenografts in mice. When we compared these with commonly used GBM cell lines in the Cancer Cell Line Encyclopedia (CCLE), we found these patient-derived models to have greater diversity in gene expression and to better correspond to GBMs directly sequenced from patient tumor samples. We also evaluated the potential of these models for targeted therapy, by using the genomic characterization to identify small molecules that inhibit the growth of distinct subsets of GBMs, paving the way for precision medicines for GBM.

2.
ACS Med Chem Lett ; 8(2): 151-156, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28197303

ABSTRACT

High throughput screening and subsequent hit validation identified 4-isopropyl-3-(2-((1-phenylethyl)amino)pyrimidin-4-yl)oxazolidin-2-one as a potent inhibitor of IDH1R132H. Synthesis of the four separate stereoisomers identified the (S,S)-diastereomer (IDH125, 1f) as the most potent isomer. This also showed reasonable cellular activity and excellent selectivity vs IDH1wt. Initial structure-activity relationship exploration identified the key tolerances and potential for optimization. X-ray crystallography identified a functionally relevant allosteric binding site amenable to inhibitors, which can penetrate the blood-brain barrier, and aided rational optimization. Potency improvement and modulation of the physicochemical properties identified (S,S)-oxazolidinone IDH889 (5x) with good exposure and 2-HG inhibitory activity in a mutant IDH1 xenograft mouse model.

3.
Structure ; 25(3): 506-513, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28132785

ABSTRACT

Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1R132H mutation destabilizes an IDH1 "regulatory segment," which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.


Subject(s)
Enzyme Inhibitors/pharmacology , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Neoplasms/genetics , Small Molecule Libraries/pharmacology , Allosteric Regulation , Allosteric Site , Crystallography, X-Ray , Glutarates/metabolism , Humans , Isocitrate Dehydrogenase/antagonists & inhibitors , Protein Binding , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics
4.
Elife ; 52016 05 16.
Article in English | MEDLINE | ID: mdl-27183006

ABSTRACT

The TMPRSS2:ERG gene fusion is common in androgen receptor (AR) positive prostate cancers, yet its function remains poorly understood. From a screen for functionally relevant ERG interactors, we identify the arginine methyltransferase PRMT5. ERG recruits PRMT5 to AR-target genes, where PRMT5 methylates AR on arginine 761. This attenuates AR recruitment and transcription of genes expressed in differentiated prostate epithelium. The AR-inhibitory function of PRMT5 is restricted to TMPRSS2:ERG-positive prostate cancer cells. Mutation of this methylation site on AR results in a transcriptionally hyperactive AR, suggesting that the proliferative effects of ERG and PRMT5 are mediated through attenuating AR's ability to induce genes normally involved in lineage differentiation. This provides a rationale for targeting PRMT5 in TMPRSS2:ERG positive prostate cancers. Moreover, methylation of AR at arginine 761 highlights a mechanism for how the ERG oncogene may coax AR towards inducing proliferation versus differentiation.


Subject(s)
Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Oncogene Proteins, Fusion/genetics , Protein-Arginine N-Methyltransferases/genetics , Receptors, Androgen/genetics , Serine Endopeptidases/genetics , Base Sequence , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Epithelial Cells/pathology , Humans , Male , Methylation , Models, Molecular , Mutation , Oncogene Proteins, Fusion/metabolism , Prostate/metabolism , Prostate/pathology , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Secondary , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Androgen/chemistry , Receptors, Androgen/metabolism , Serine Endopeptidases/metabolism , Signal Transduction , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism
5.
Science ; 351(6278): 1208-13, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26912361

ABSTRACT

5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP-deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/metabolism , Methionine/metabolism , Neoplasms/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Purine-Nucleoside Phosphorylase/metabolism , Cell Line, Tumor , Cell Survival , Cyclin-Dependent Kinase Inhibitor p16/genetics , Deoxyadenosines/metabolism , Gene Deletion , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Protein-Arginine N-Methyltransferases/genetics , Purine-Nucleoside Phosphorylase/genetics , RNA, Small Interfering/genetics , Thionucleosides/metabolism
6.
Cancer Res ; 74(12): 3317-31, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24755473

ABSTRACT

Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed (13)C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation.


Subject(s)
Citric Acid Cycle , Isocitrate Dehydrogenase/genetics , Mitochondria/metabolism , Mutation, Missense , Animals , Antineoplastic Agents/pharmacology , Cell Hypoxia , Enzyme Inhibitors/pharmacology , Glutamine/metabolism , HCT116 Cells , Humans , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/metabolism , Mice , Oxidation-Reduction , Stress, Physiological , Xenograft Model Antitumor Assays
7.
Mol Cancer Ther ; 13(6): 1492-502, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24737027

ABSTRACT

Members of the ETS transcription factor family have been implicated in several cancers, where they are often dysregulated by genomic derangement. ETS variant 1 (ETV1) is an ETS factor gene that undergoes chromosomal translocation in prostate cancers and Ewing sarcomas, amplification in melanomas, and lineage dysregulation in gastrointestinal stromal tumors. Pharmacologic perturbation of ETV1 would be appealing in these cancers; however, oncogenic transcription factors are often deemed "undruggable" by conventional methods. Here, we used small-molecule microarray screens to identify and characterize drug-like compounds that modulate the biologic function of ETV1. We identified the 1,3,5-triazine small molecule BRD32048 as a top candidate ETV1 perturbagen. BRD32048 binds ETV1 directly, modulating both ETV1-mediated transcriptional activity and invasion of ETV1-driven cancer cells. Moreover, BRD32048 inhibits p300-dependent acetylation of ETV1, thereby promoting its degradation. These results point to a new avenue for pharmacologic ETV1 inhibition and may inform a general means to discover small molecule perturbagens of transcription factor oncoproteins.


Subject(s)
Aniline Compounds/administration & dosage , DNA-Binding Proteins/metabolism , Molecular Targeted Therapy , Neoplasms/drug therapy , Prostatic Neoplasms/drug therapy , Transcription Factors/metabolism , Triazines/administration & dosage , Cell Line, Tumor , DNA-Binding Proteins/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Neoplasms/metabolism , Promoter Regions, Genetic , Prostatic Neoplasms/pathology , Small Molecule Libraries , Surface Plasmon Resonance , Transcription Factors/antagonists & inhibitors
8.
J Biol Chem ; 287(50): 42180-94, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23038259

ABSTRACT

Mutations in the genes encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in a variety of tumor types, resulting in production of the proposed oncometabolite, 2-hydroxyglutarate (2-HG). How mutant IDH and 2-HG alter signaling pathways to promote cancer, however, remains unclear. Additionally, there exist relatively few cell lines with IDH mutations. To examine the effect of endogenous IDH mutations and 2-HG, we created a panel of isogenic epithelial cell lines with either wild-type IDH1/2 or clinically relevant IDH1/2 mutations. Differences were noted in the ability of IDH mutations to cause robust 2-HG accumulation. IDH1/2 mutants that produce high levels of 2-HG cause an epithelial-mesenchymal transition (EMT)-like phenotype, characterized by changes in EMT-related gene expression and cellular morphology. 2-HG is sufficient to recapitulate aspects of this phenotype in the absence of an IDH mutation. In the cells types examined, mutant IDH-induced EMT is dependent on up-regulation of the transcription factor ZEB1 and down-regulation of the miR-200 family of microRNAs. Furthermore, sustained knockdown of IDH1 in IDH1 R132H mutant cells is sufficient to reverse many characteristics of EMT, demonstrating that continued expression of mutant IDH is required to maintain this phenotype. These results suggest mutant IDH proteins can reversibly deregulate discrete signaling pathways that contribute to tumorigenesis.


Subject(s)
Epithelial-Mesenchymal Transition , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism , Isocitrate Dehydrogenase/biosynthesis , MicroRNAs/biosynthesis , Mutation, Missense , Neoplasm Proteins/metabolism , Neoplasms/metabolism , RNA, Neoplasm/biosynthesis , Transcription Factors/metabolism , Amino Acid Substitution , Cell Line, Tumor , Glutarates/metabolism , Homeodomain Proteins/genetics , Humans , Isocitrate Dehydrogenase/genetics , MicroRNAs/genetics , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , RNA, Neoplasm/genetics , Transcription Factors/genetics , Up-Regulation/genetics , Zinc Finger E-box-Binding Homeobox 1
SELECTION OF CITATIONS
SEARCH DETAIL
...