Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 497: 59-67, 2023 05.
Article in English | MEDLINE | ID: mdl-36907311

ABSTRACT

The establishment of body pattern is a fundamental process in developmental biology. In Drosophila, the wing disc is subdivided into dorsal (D) and ventral (V) compartments by the D/V boundary. The dorsal fate is adopted by expressing the selector gene apterous (ap). ap expression is regulated by three combinational cis-regulatory modules which are activated by EGFR pathway, Ap-Vg auto-regulatory and epigenetic mechanisms. Here, we found that the Tbx family transcription factor Optomotor-blind (Omb) restricted ap expression in the ventral compartment. Loss of omb induced autonomous initiation of ap expression in the middle third instar larvae in the ventral compartment. Oppositely, over-activation of omb inhibited ap in the medial pouch. All three enhancers apE, apDV and apP were upregulated in omb null mutants, indicating a combinational regulation of ap modulators. However, Omb affected ap expression neither by directly regulating EGFR signaling, nor via Vg regulation. Therefore, a genetic screen of epigenetic regulators, including the Trithorax group (TrxG) and Polycomb group (PcG) genes was performed. We found that knocking down the TrxG gene kohtalo (kto), domino (dom) or expressing the PcG gene grainy head (grh), the ectopic ap in omb mutants was repressed. The inhibition of apDV by kto knockdown and grh activation could contribute to ap repression. Moreover, Omb and the EGFR pathway are genetically parallel in ap regulation in the ventral compartment. Collectively, Omb is a repressive signal for ap expression in the ventral compartment, which requires TrxG and PcG genes.


Subject(s)
Drosophila Proteins , Nerve Tissue Proteins , Transcription Factors , Animals , DNA-Binding Proteins/metabolism , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , ErbB Receptors/metabolism , Gene Expression Regulation , Transcription Factors/genetics , Transcription Factors/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism
2.
Int J Mol Sci ; 23(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36012653

ABSTRACT

Sublethal doses of insecticides have many impacts on pest control and agroecosystems. Insects that survive a sublethal dose of insecticide could adapt their physiological and behavioral functions and resist this environmental stress, which contributes to the challenge of pest management. In this study, the sublethal effects of thiamethoxam on gene expression were measured through RNA sequencing in the melon aphid Aphis gossypii. Genes regulating energy production were downregulated, while genes related to neural function were upregulated. To further address the function of genes related to neurotransmission, RNA interference (RNAi) was implemented by transdermal delivery of dsRNA targeting synapsin (syn), a gene regulating presynaptic vesicle clustering. The gene expression of synapsin was knocked down and the mortality of aphids was increased significantly over the duration of the assay. Co-delivery of syn-dsRNA and thiamethoxam reversed the upregulation of synapsin caused by low-dose thiamethoxam and resulted in lethality to melon aphids, suggesting that the decreased presynaptic function may contribute to this synergistic lethal effect. In addition, the nanocarrier star polycation, which could bind both dsRNA and thiamethoxam, greatly improved the efficacy of lethality. These results increase our knowledge of the gene regulation induced by sublethal exposure to neonicotinoids and indicated that synapsin could be a potential RNAi target for resistance management of the melon aphid.


Subject(s)
Aphids , Insecticides , Animals , Aphids/genetics , Insecticides/pharmacology , Nitro Compounds/pharmacology , RNA, Double-Stranded/genetics , RNA, Double-Stranded/pharmacology , Synapsins/genetics , Synaptic Transmission , Thiamethoxam/pharmacology
3.
Insect Biochem Mol Biol ; 131: 103552, 2021 04.
Article in English | MEDLINE | ID: mdl-33577967

ABSTRACT

Regeneration is a common phenomenon in various organisms by which tissues restore the damaged or naturally detached parts. In insects, appendage regeneration takes place during the embryonic, larval and pupal stages for individual survival. The wing disc of black cutworm Agrotis ypsilon has the capacity of regeneration after ablation, but understanding of molecular mechanisms in wing disc regeneration is still limited. After ablation of partial or whole wing discs before the fifth instar larval stage, the adult wings appeared to be normal. In the last two larval stages, ablation of the left wing disc led to smaller corresponding adult wing. Cell proliferation was reduced in the ablated wing disc but was gradually recovered two days post ablation. Transcriptome analysis found that genes in the mitogen-activated protein kinase (MAPK) pathway were upregulated. Repression of gene expression in this pathway, including Ras oncogene at 64B (Ras64B), Downstream of raf1 (Dsor1), and cAMP-dependent protein kinase catalytic subunit 3 (Pka-C3) by RNA interference after ablation, led to diminishment of both adult wings, suggesting that the MAPK signaling is essential for wing growth. Additionally, cell proliferation was still decelerated by injecting Ras64B, Dsor, or Pka-C3 dsRNA two days after ablation, indicating that the MAPK signaling-regulated cell proliferation is essential for growth. These results provide molecular clues to the regulation of cell proliferation during regeneration in lepidopteran insects.


Subject(s)
Moths , Regeneration , Wings, Animal , Animals , Cell Proliferation/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genes, Insect , Genes, ras , Larva/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Moths/embryology , Moths/metabolism , Pupa/metabolism , Regeneration/genetics , Regeneration/physiology , Signal Transduction , Wings, Animal/embryology , Wings, Animal/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...