Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Food Chem ; 455: 139852, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823142

ABSTRACT

Over the last few decades, there is increasing worldwide concern over human health risks associated with extensive use of pesticides in agriculture. Developing excellent SERS substrate materials to achieve highly sensitive detection of pesticide residues in the food is very necessary owing to their serious threat to human health through food chains. Self-assembled metallic nanoparticles have been demonstrated to be excellent SERS substrate materials. Hence, alkanethiols-protected gold nanoparticles have been successfully prepared for forming larger-scale two-dimensional monolayer films. These films can be disassembled into a fluid state and re-assembled back to crystallized structure by controlling surface pressure. Further investigations reveal that their self-assembled structures are mainly dependent on the diameter of gold nanoparticles and ligand length. These results suggest that the size ratio of nanoparticle diameter/ligand length within the range of 4.45-2.35 facilitates the formation of highly ordered 2D arrays. Furthermore, these arrays present excellent Surface-Enhanced Raman Scattering performances in the detection of trace thiram, which can cause environmental toxicity to the soil, water, animals and result in severe damage to human health. Therefore, the current study provides an effective way for preparing monodispersed hydrophobic gold nanoparticles and forming highly ordered 2D close-packed SERS substrate materials via self-assembly to detect pesticide residues in food. We believe that, our research provides not only advanced SERS substrate materials for excellent detection performance of thiram in food, but also novel fundamental understandings of self-assembly, manipulation of nanoparticle interactions, and controllable synthesis.


Subject(s)
Gold , Metal Nanoparticles , Pesticide Residues , Spectrum Analysis, Raman , Thiram , Spectrum Analysis, Raman/methods , Gold/chemistry , Thiram/chemistry , Thiram/analysis , Metal Nanoparticles/chemistry , Pesticide Residues/chemistry , Pesticide Residues/analysis , Food Contamination/analysis
2.
J Colloid Interface Sci ; 668: 142-153, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38669992

ABSTRACT

Based on real-time detection of plantar pressure, gait recognition could provide important health information for rehabilitation administration, fatigue prevention, and sports training assessment. So far, such researches are extremely limited due to lacking of reliable, stable and comfortable plantar pressure sensors. Herein, a strategy for preparing high compression strength and resilience conductive iongels has been proposed by implanting physically entangled polymer chains with covalently cross-linked networks. The resulting iongels have excellent mechanical properties including nice compliance (young's modulus < 300 kPa), high compression strength (>10 MPa at a strain of 90 %), and good resilience (self-recovery within seconds). And capacitive pressure sensor composed by them possesses excellent sensitivity, good linear response even under very small stress (∼kPa), and long-term durability (cycles > 100,000) under high-stress conditions (133 kPa). Then, capacitive pressure sensor arrays have been prepared for high-precision detection of plantar pressure spatial distribution, which also exhibit excellent sensing performances and long-term stability. Further, an extremely sensitive and fast response plantar pressure monitoring system has been designed for monitoring plantar pressure of foot at different postures including upright, forward and backward. The system achieves real-time tracking and monitoring of changes of plantar pressure during different static and dynamic posture processes. And the characteristics of plantar pressure information can be digitally and photography displayed. Finally, we propose an intelligent framework for real-time detection of plantar pressure by combining electronic insoles with data analysis system, which presents excellent applications in sport trainings and safety precautions.


Subject(s)
Pressure , Humans , Electric Conductivity , Foot/physiology , Monitoring, Physiologic/instrumentation , Gait/physiology , Surface Properties , Wearable Electronic Devices
3.
Antimicrob Agents Chemother ; 68(4): e0095623, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38446062

ABSTRACT

Viral RNA-dependent RNA polymerase (RdRp), a highly conserved molecule in RNA viruses, has recently emerged as a promising drug target for broad-acting inhibitors. Through a Vero E6-based anti-cytopathic effect assay, we found that BPR3P0128, which incorporates a quinoline core similar to hydroxychloroquine, outperformed the adenosine analog remdesivir in inhibiting RdRp activity (EC50 = 0.66 µM and 3 µM, respectively). BPR3P0128 demonstrated broad-spectrum activity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. When introduced after viral adsorption, BPR3P0128 significantly decreased SARS-CoV-2 replication; however, it did not affect the early entry stage, as evidenced by a time-of-drug-addition assay. This suggests that BPR3P0128's primary action takes place during viral replication. We also found that BPR3P0128 effectively reduced the expression of proinflammatory cytokines in human lung epithelial Calu-3 cells infected with SARS-CoV-2. Molecular docking analysis showed that BPR3P0128 targets the RdRp channel, inhibiting substrate entry, which implies it operates differently-but complementary-with remdesivir. Utilizing an optimized cell-based minigenome RdRp reporter assay, we confirmed that BPR3P0128 exhibited potent inhibitory activity. However, an enzyme-based RdRp assay employing purified recombinant nsp12/nsp7/nsp8 failed to corroborate this inhibitory activity. This suggests that BPR3P0128 may inhibit activity by targeting host-related RdRp-associated factors. Moreover, we discovered that a combination of BPR3P0128 and remdesivir had a synergistic effect-a result likely due to both drugs interacting with separate domains of the RdRp. This novel synergy between the two drugs reinforces the potential clinical value of the BPR3P0128-remdesivir combination in combating various SARS-CoV-2 variants of concern.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 , Pyrazoles , Quinolines , Humans , SARS-CoV-2/metabolism , RNA-Dependent RNA Polymerase/metabolism , Molecular Docking Simulation , COVID-19 Drug Treatment , Antiviral Agents/chemistry
4.
Soft Matter ; 19(48): 9505-9510, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38044703

ABSTRACT

The organization of microscopic objects into specific structures with movable parts is a prerequisite for building sophisticated micromachines with complex functions, as exemplified by their macroscopic counterparts. Here we report the self-assembly of active and passive colloids into micromachinery with passive rotational parts. Depending on the attachment of the active colloid to a substrate, which varies the degrees of free freedom of the assembly, colloidal machines with rich internal rotational dynamics are realized. Energetic analysis reveals that the energy efficiency increases with the degrees of freedom of the machine. The experimental results can be rationalized by the cooperation of phoretic interaction and osmotic flow encoded in the shape of the active colloid, which site-specifically binds and exerts a torque to passive colloids, supported by finite element calculations and mesoscale simulations. Our work offers a new design principle that utilizes nonequilibrium interfacial phenomena for spontaneous construction of multiple-component reconfigurable micromachinery.

5.
J Colloid Interface Sci ; 631(Pt A): 155-164, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36371824

ABSTRACT

HYPOTHESIS: Depletion attraction induced by polymers can be employed across multiple disciplines. Previous studies implied that besides screening the electrostatic repulsion between colloids, adding salt may also affect the polymers even in a nonpolar solvent. Here, we study the depletion-induced gelation of a colloid-polymer model system, focusing on the salt effects on the depletion attraction. EXPERIMENTS: Confocal microscopy was used to quantitatively characterize the colloidal gels formed by the polymethylmethacrylate (PMMA)/polystyrene (PS) model system. The attraction experienced by colloids was estimated by correlating the colloidal dynamics with the local structure. Correspondingly, static light scattering was employed to systematically investigate the polymers. The resulting radius of gyration Rg and osmotic pressure were used to evaluate the depletion attraction offered by polymers. FINDINGS: Salt was discovered to lower the strength of inter-particle attraction, which can be attributed to the salt-induced decrease in Rg. The depletion attraction grew sublinearly with c, owing to the considerable decrease in Rg in the good solvent as c increased. We demonstrated how the close form equations in the framework of renormalization group theory can be employed to predict the depletion interaction using the properly determined zero-concentration radius of gyration.


Subject(s)
Polymers , Salinity , Polymers/chemistry , Colloids/chemistry , Static Electricity , Solvents/chemistry
6.
Front Chem ; 10: 973961, 2022.
Article in English | MEDLINE | ID: mdl-36034655

ABSTRACT

The application of the active colloids is strongly related to their self-propulsion velocity, which is controlled by the generated anisotropic concentration field. We investigated the effect of this anisotropy on velocity induced by numerical treatments and size of Janus colloids. The far-field approximation is effective in estimating the velocity, even though it neglects the shape effect on the anisotropy of the concentration field. If the surface mobility contrast between the active and the inert part is moderate, the spherical approximation is feasible for sphere-like Janus colloids. Legendre expansion of the concentration field causes artificial anisotropy. Raising the order of the expansion can suppress this effect, but also distorts the concentration field at the top of active part. Thus, the order of the expansion should be chosen carefully depending on the goal of the study. Based on the verified Legendre expansion method and ionic-diffusiophoresis model, we show that due to the size-effect on both the concentration field and the surface mobility, increasing size of colloids can lower the self-propulsion velocity. Our finding is consistent with previous experimental observations without fitting parameter, shedding new light on the self-propulsion mechanism of chemically-driven active colloids. We further show a velocity reversal at high overall ζ potential induced by increasing size, providing a new way for controlling the dynamics of acitve colloids.

8.
Front Chem ; 10: 898469, 2022.
Article in English | MEDLINE | ID: mdl-35529698

ABSTRACT

[This corrects the article DOI: 10.3389/fchem.2022.803906.].

9.
Front Chem ; 10: 803906, 2022.
Article in English | MEDLINE | ID: mdl-35360529

ABSTRACT

Catalytic activity of the colloids and chemotactic response to gradients of the chemicals in the solution leads to effective interaction between catalytic colloids. In this paper, we simulate mixtures of active and passive colloids via a Brownian dynamics algorithm. These particles interact via phoretic interactions, which are determined by two independent parameters, surface activity and surface mobility. We find rich dynamic structures by tuning passive colloids' surface mobility, size, and area fractions, which include schools of active colloids with exclusion zone, yolk/shell cluster, and stable active-passive alloys to motile clusters. Dynamical cluster can also be formed due to the nonreciprocity of the phoretic interaction. Increasing the size ratio of passive colloids to active colloids favors the phase separation of active and passive colloids, resulting in yolk/shell structure. Increasing the area fraction of active colloids tends to transfer from dynamical clusters into stable alloys. The simulated binary active colloid systems exhibit intriguing nonequilibrium phenomena that mimic the dynamic organizations of active/passive systems.

10.
J Virol ; 96(7): e0054221, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35319229

ABSTRACT

While infections by enterovirus A71 (EV-A71) are generally self-limiting, they can occasionally lead to serious neurological complications and death. No licensed therapies against EV-A71 currently exist. Using anti-virus-induced cytopathic effect assays, 3,4-dicaffeoylquinic acid (3,4-DCQA) from Ilex kaushue extracts was found to exert significant anti-EV-A71 activity, with a broad inhibitory spectrum against different EV-A71 genotypes. Time-of-drug-addition assays revealed that 3,4-DCQA affects the initial phase (entry step) of EV-A71 infection by directly targeting viral particles and disrupting viral attachment to host cells. Using resistant virus selection experiments, we found that 3,4-DCQA targets the glutamic acid residue at position 98 (E98) and the proline residue at position 246 (P246) in the 5-fold axis located within the VP1 structural protein. Recombinant viruses harboring the two mutations were resistant to 3,4-DCQA-elicited inhibition of virus attachment and penetration into human rhabdomyosarcoma (RD) cells. Finally, we showed that 3,4-DCQA specifically inhibited the attachment of EV-A71 to the host receptor heparan sulfate (HS), but not to the scavenger receptor class B member 2 (SCARB2) and P-selectin glycoprotein ligand-1 (PSGL1). Molecular docking analysis confirmed that 3,4-DCQA targets the 5-fold axis to form a stable structure with the E98 and P246 residues through noncovalent and van der Waals interactions. The targeting of E98 and P246 by 3,4-DCQA was found to be specific; accordingly, HS binding of viruses carrying the K242A or K244A mutations in the 5-fold axis was successfully inhibited by 3,4-DCQA.The clinical utility of 3,4-DCQA in the prevention or treatment of EV-A71 infections warrants further scrutiny. IMPORTANCE The canyon region and the 5-fold axis of the EV-A71 viral particle located within the VP1 protein mediate the interaction of the virus with host surface receptors. The three most extensively investigated cellular receptors for EV-A71 include SCARB2, PSGL1, and cell surface heparan sulfate. In the current study, a RD cell-based anti-cytopathic effect assay was used to investigate the potential broad spectrum inhibitory activity of 3,4-DCQA against different EV-A71 strains. Mechanistically, we demonstrate that 3,4-DCQA disrupts the interaction between the 5-fold axis of EV-A71 and its heparan sulfate receptor; however, no effect was seen on the SCARB2 or PSGL1 receptors. Taken together, our findings show that this natural product may pave the way to novel anti-EV-A71 therapeutic strategies.


Subject(s)
Chlorogenic Acid/analogs & derivatives , Enterovirus A, Human , Enterovirus Infections , Ilex , Plants, Medicinal , Antiviral Agents/therapeutic use , Cell Line, Tumor , Chlorogenic Acid/therapeutic use , Enterovirus A, Human/genetics , Enterovirus Infections/drug therapy , Heparitin Sulfate/metabolism , Humans , Ilex/chemistry , Molecular Docking Simulation , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry
11.
Small ; 18(15): e2107621, 2022 04.
Article in English | MEDLINE | ID: mdl-35142080

ABSTRACT

Light-actuated micromachines are of enormous interest due to their ability to harvest light for triggering catalytic reactions to acquire free energy for mechanical work. This work presents an inorganic-organic hybrid copolymeric poly(cyclotriphosphazene-co-barbituric acid) colloid, which displays multiwavelength excited emission and catalytic activities, exploiting the unique structural, chemical, and optical features of inorganic heterocyclic ring hexachlorocyclotriphosphazene and organic co-monomer barbituric acid. Specifically, this work reveals particle-resolved unusual multicolor emission under excitation with the same or different wavelengths of light using fluorescence microscopy. The result is rationalized by density functional theory studies. In this work, the authors find that emission is coincident with fluorometric measurements, and the photocatalytic properties are anticipated from the overall band structure. This work also demonstrates the use of these colloids as micropumps, which can be remotely activated by UV, blue, and green lights under fuel-free conditions, and ascribe the behavior to ionic diffusiophoresis arising from light-triggered generation of H+ and other charged species. This work offers a new class of polymeric colloids with multiple-wavelength excited emission and catalytic activities, which is expected to open new opportunities in the design of fuel-free, photo-actuated micromachines and active systems.


Subject(s)
Colloids , Polymers , Catalysis , Colloids/chemistry , Light
12.
Phys Rev Lett ; 127(16): 168001, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34723584

ABSTRACT

We study experimentally the effect of added salt in the phoretic motion of chemically driven colloidal particles. We show that the response of passive colloids to a fixed active colloid, be it attractive or repulsive, depends on the ionic strength, the ζ potential, and the size of the passive colloids. We further report that the direction of self-propulsion of Janus colloids can be reversed by decreasing their ζ potential below a critical value. By constructing an effective model that treats the colloid and ions as a whole subjected to the concentration field of generated ions and takes into account the joint effect of both generated and background ions in determining the Debye length, we demonstrate that the response of the passive colloids and the velocity of the Janus colloids can be quantitatively captured by this model under the ionic diffusiophoresis theory beyond the infinitely-thin-double-layer limit.

13.
Biomed J ; 44(3): 293-303, 2021 06.
Article in English | MEDLINE | ID: mdl-34119448

ABSTRACT

BACKGROUND: While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection presents with mild or no symptoms in most cases, a significant number of patients become critically ill. Remdesivir has been approved for the treatment of coronavirus disease 2019 (COVID-19) in several countries, but its use as monotherapy has not substantially lowered mortality rates. Because agents from traditional Chinese medicine (TCM) have been successfully utilized to treat pandemic and endemic diseases, we designed the current study to identify novel anti-SARS-CoV-2 agents from TCM. METHODS: We initially used an antivirus-induced cell death assay to screen a panel of herbal extracts. The inhibition of the viral infection step was investigated through a time-of-drug-addition assay, whereas a plaque reduction assay was carried out to validate the antiviral activity. Direct interaction of the candidate TCM compound with viral particles was assessed using a viral inactivation assay. Finally, the potential synergistic efficacy of remdesivir and the TCM compound was examined with a combination assay. RESULTS: The herbal medicine Perilla leaf extract (PLE, approval number 022427 issued by the Ministry of Health and Welfare, Taiwan) had EC50 of 0.12 ± 0.06 mg/mL against SARS-CoV-2 in Vero E6 cells - with a selectivity index of 40.65. Non-cytotoxic PLE concentrations were capable of blocking viral RNA and protein synthesis. In addition, they significantly decreased virus-induced cytokine release and viral protein/RNA levels in the human lung epithelial cell line Calu-3. PLE inhibited viral replication by inactivating the virion and showed additive-to-synergistic efficacy against SARS-CoV-2 when used in combination with remdesivir. CONCLUSION: Our results demonstrate for the first time that PLE is capable of inhibiting SARS-CoV-2 replication by inactivating the virion. Our data may prompt additional investigation on the clinical usefulness of PLE for preventing or treating COVID-19.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Perilla frutescens , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Virus Inactivation , Animals , COVID-19 , Chlorocebus aethiops , Humans , Perilla frutescens/chemistry
14.
Langmuir ; 37(26): 7986-7994, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34157841

ABSTRACT

It has been suggested that irreversible adsorption at the gas/liquid interface of bulk nanobubbles will reduce the Laplace pressure, leading to their stability. However, most previous studies have focused on the stability of individual nanobubbles. Bulk nanobubbles are polydispersed suspensions, and gas molecules can diffuse between bubbles, leading to their collective dynamics, which may be crucial to understanding their formation process and stability. In this study, we proposed a mean-field theory for computing the evolution of the size-distribution function of bulk nanobubbles with size-dependent surface tension. We applied this theory to investigate the evolution of bulk nanobubbles with insoluble surfactants pinned at their gas/water interface. The results show that Ostwald ripening can be suppressed when enough surfactants are adsorbed. Bulk nanobubbles can be produced by the shrinkage of microbubbles in an air-saturated solution. The mean stable size is controlled by the amount of surfactants and the initial microbubble concentration; these predictions are qualitatively consistent with the experimental results of micro/nanobubbles produced using the microfluidic method.

15.
Adv Sci (Weinh) ; 8(6): 2002672, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33747722

ABSTRACT

Nanodroplets have been paid great attention as they are crucial for a wide range of physical, chemical, and biological applications. In this paper, monodispersed nanodroplets are prepared and their directed motions are realized through conducting the formation of nonuniform structures via altering the ionic distribution within; all these dynamics have been observed by using in situ transmission electron microscopy liquid cell technology. It has been found that their transformation from random motion to directed motion is reversible. Moreover, combining multiple directed motions enables long-distance travel with directed motion taking up 95% of the total time. The results here also prove that aqueous nanodroplets can slide directionally on the hydrophilic surface like droplets sliding on hydrophobic surface. Furthermore, the authors successfully achieve the unidirectional transportation of in situ prepared Ag nanoparticles by using the nanodroplets as nanoreactor, carrier, and transporter. The size and number of as-prepared Ag nanoparticles can be quantitatively controlled. In summary, this research provides a new strategy for real-time generation and precise manipulation of aqueous nanodroplets. Together with the quantitatively controllable in situ synthesis of Ag nanoparticles within the nanodroplets, this work can prove their promising applications in many fields.

16.
Langmuir ; 37(4): 1429-1437, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33464908

ABSTRACT

We investigated experimentally and theoretically the interactions and assembly of rodlike colloids in a ferrofluid confined at solid/liquid interface by the gravity under external magnetic fields. We first derived analytical expressions for the interaction energy of a single rod with the external magnetic field and the interaction between two rods using classical electromagnetism. The theory well captured the experimentally observed alignment of a single rod along the field direction under an in-plane field and switching between the horizontal and the vertical configurations in an out-of-plane field due to the competition between the magnetic energy and the gravitational energy. The theory can also predict the symmetric position fluctuations of a free rod on a fixed one at 90° and the gradual bias toward the end of the fixed rod as the angle was reduced to 0°, favoring the tip-toe arrangement. Finally, we showed that this anisotropic interaction led to the formation of chain-like structures, whose growth kinetics followed a simple scaling behavior with time. This work provides a theoretical framework for understanding the behaviors of rodlike colloids in ferrofluids and highlights the importance of shape anisotropy in manipulating colloids and their self-assembly.

17.
ACS Appl Bio Mater ; 4(5): 4345-4353, 2021 05 17.
Article in English | MEDLINE | ID: mdl-35006846

ABSTRACT

Various single-atom materials exhibit distinguished performances in catalysis and biology. To boost their applications, single-atom-based strategies are highly demanded to exhibit repeatable functions on advanced wearable substrates. However, single-atom approaches are rarely reported to anchor on wearable materials, i.e., widely applied cotton fabrics. Here, we developed a simple method of loading uniformly dispersed single tungsten atoms on cotton via ordinary direct-dye processing to exhibit superior sustainable functions. The single sites of tungsten atom centers are constructed by binding oxygen-coordinated single tungsten atom on the cotton fabric surface via -COOH groups. Consequently, the band gap of single sites decreases significantly to 2.75 from 3.03 eV. Therefore, the single-site-modified cotton exhibits excellent visible-light-driven (>420 nm) photocatalytic degradation efficiency of organic dyes, which exceeds other reported cotton-based materials by nearly two orders of magnitude. Furthermore, the single-site-modified cotton also exhibits great antibacterial performance due to reactive oxygen species. Moreover, the cotton with anchored single sites possesses great washing-resistance ability during 20 laundry cycles under soap-washing conditions. After recycling, the single sites on cotton have no obvious changes in the microstructure, which demonstrates the success of our sustainable strategy of single sites anchored on cotton. The single-site technique can be extended to many other elemental atoms on various wearable devices, providing a playground for functional material communities.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Cotton Fiber , Light , Staphylococcus aureus/drug effects , Tungsten/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Catalysis , Materials Testing , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Particle Size , Photochemical Processes , Tungsten/chemistry , Wound Healing/drug effects
18.
Chem Commun (Camb) ; 56(97): 15301-15304, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33201949

ABSTRACT

We report the synthesis of silver-based Janus micromotors that self-propel at 3.5 µm s-1 and speed up to 45 µm s-1 in 0.044 and 1.5 mM of H2O2, respectively, via ionic diffusiophoresis. Morphology optimization further accelerates the speed to 90 µm s-1, which leads to a force of 1 pN and a power of 0.1 fW, similar to biomolecular motors. Their efficiency reaches 10-5, at least two orders of magnitude higher than other chemically-driven micromotors. These micromotors hold great promises in various applications.

19.
ACS Appl Mater Interfaces ; 12(44): 50152-50160, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33084299

ABSTRACT

Viral capsid-like particles tiled with mosaic patches have attracted great attention as they imitate nature's design to achieve advanced material properties and functions. Here, we develop a facile one-pot soft-template method to synthesize biomimetic gold capsid-like colloids with tunable particle size and surface roughness. Uniform submicron-to-micron-sized hollow gold colloidal particles are successfully achieved by using tannic acids as soft templates and reducing agents, which first self-assemble into spherical complex templates before the reduction of Au3+ ions via their surface hydroxyl groups. The surface roughness, the size, and the total number of the patches of the prepared gold particles are further tuned, utilizing a mechanism that offers morphology control by varying the number of surface hydroxyl groups participating in the reduction reactions. Among different capsid-like gold colloids, those possessing a rough surface display superior catalytic properties and show promising results as surface-enhanced Raman spectroscopy (SERS) solid substrates for detecting small organic molecules and biomimetic enzymes in a liquid phase for sensing biomolecules in real samples. These capsid-like gold colloids are also expected to find practical applications in delivery systems, electronics, and optics. We believe that our strategy of imitating nature's design of capsid-like structures should also be used in the design and fabrication of other functional colloidal particles.


Subject(s)
Biomimetic Materials/chemical synthesis , Gold/chemistry , Biomimetic Materials/chemistry , Catalysis , Colloids/chemical synthesis , Colloids/chemistry , Molecular Structure , Particle Size , Spectrum Analysis, Raman , Surface Properties
20.
Molecules ; 25(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33050063

ABSTRACT

The major groups of antioxidant compounds (isoflavonoids, xanthones, hydroxycinnamic acids) in the rhizome methanol extracts of four Ukrainian Iris sp. (Iris pallida, Iris hungarica, Iris sibirica, and Iris variegata) were qualitatively and quantitatively analyzed using HPLC-DAD and UPLC-MS/MS. Gallic acid, caffeic acid, mangiferin, tectoridin, irigenin, iristectorigenin B, irisolidone, 5,6-dihydroxy-7,8,3',5'-tetramethoxyisoflavone, irisolidone-7-O-ß-d-glucopyranoside, germanaism B, and nigricin were recognized by comparing their UV/MS spectra, chromatographic retention time (tR) with those of standard reference compounds. I. hungarica and I. variegata showed the highest total amount of phenolic compounds. Germanaism B was the most abundant component in the rhizomes of I. variegata (7.089 ± 0.032 mg/g) and I. hungarica (6.285 ± 0.030 mg/g). The compound analyses showed good calibration curve linearity (r2 > 0.999) and low detection and quantifications limit. These results validated the method for its use in the simultaneous quantitative evaluation of phenolic compounds in the studied Iris sp. I. hungarica and I. variegata rhizomes exhibited antioxidant activity, as demonstrated by the HPLC-ABTS system and NRF2 expression assay and anti-inflammatory activity on respiratory burst in human neutrophils. Moreover, the extracts showed anti-allergic and cytotoxic effects against cancer cells. Anti-coronavirus 229E and lipid formation activities were also evaluated. In summary, potent antioxidant marker compounds were identified in the examined Iris sp.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Iris Plant/chemistry , Plant Extracts/pharmacology , Coronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Humans , NF-E2-Related Factor 2/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...