Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Interdiscip Sci ; 15(3): 405-418, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37247186

ABSTRACT

DNA methylation-based precision tumor early diagnostics is emerging as state-of-the-art technology that could capture early cancer signs 3 ~ 5 years in advance, even for clinically homogenous groups. Presently, the sensitivity of early detection for many tumors is ~ 30%, which needs significant improvement. Nevertheless, based on the genome-wide DNA methylation data, one could comprehensively characterize tumors' entire molecular genetic landscape and their subtle differences. Therefore, novel high-performance methods must be modeled by considering unbiased information using excessively available DNA methylation data. To fill this gap, we have designed a computational model involving a self-attention graph convolutional network and multi-class classification support vector machine to identify the 11 most common cancers using DNA methylation data. The self-attention graph convolutional network automatically learns key methylation sites in a data-driven way. Then, multi-tumor early diagnostics is realized by training a multi-class classification support vector machine based on the selected methylation sites. We evaluated our model's performance through several data sets of experiments, and our results demonstrate the effectiveness of the selected key methylation sites, which are highly relevant for blood diagnosis. The pipeline of the self-attention graph convolutional network based computational framework.


Subject(s)
DNA Methylation , Neoplasms , Humans , DNA Methylation/genetics , Neoplasms/diagnosis , Neoplasms/genetics , Protein Processing, Post-Translational , Support Vector Machine
2.
Mol Psychiatry ; 26(2): 383-395, 2021 02.
Article in English | MEDLINE | ID: mdl-33432190

ABSTRACT

The GABAB receptor (GABABR) agonist baclofen has been used to treat alcohol and several other substance use disorders (AUD/SUD), yet its underlying neural mechanism remains unclear. The present study aimed to investigate cortical GABABR dynamics following chronic alcohol exposure. Ex vivo brain slice recordings from mice chronically exposed to alcohol revealed a reduction in GABABR-mediated currents, as well as a decrease of GABAB1/2R and G-protein-coupled inwardly rectifying potassium channel 2 (GIRK2) activities in the motor cortex. Moreover, our data indicated that these alterations could be attributed to dephosphorylation at the site of serine 783 (ser-783) in GABAB2 subunit, which regulates the surface expression of GABABR. Furthermore, a human study using paired-pulse-transcranial magnetic stimulation (TMS) analysis further demonstrated a reduced cortical inhibition mediated by GABABR in patients with AUD. Our findings provide the first evidence that chronic alcohol exposure is associated with significantly impaired cortical GABABR function. The ability to promote GABABR signaling may account for the therapeutic efficacy of baclofen in AUD.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels , Motor Cortex , Animals , Baclofen/pharmacology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Humans , Mice , Receptors, GABA-B/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL