Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
PLoS One ; 8(10): e76334, 2013.
Article in English | MEDLINE | ID: mdl-24143184

ABSTRACT

Understory vegetation plays a crucial role in carbon and nutrient cycling in forest ecosystems; however, it is not clear how understory species affect tree litter decomposition and nutrient dynamics. In this study, we examined the impacts of understory litter on the decomposition and nutrient release of tree litter both in a pine (Pinus sylvestris var. mongolica) and a poplar (Populus × xiaozhuanica) plantation in Northeast China. Leaf litter of tree species, and senesced aboveground materials from two dominant understory species, Artemisia scoparia and Setaria viridis in the pine stand and Elymus villifer and A. sieversiana in the poplar stand, were collected. Mass loss and N and P fluxes of single-species litter and three-species mixtures in each of the two forests were quantified. Data from single-species litterbags were used to generate predicted mass loss and N and P fluxes for the mixed-species litterbags. In the mixture from the pine stand, the observed mass loss and N release did not differ from the predicted value, whereas the observed P release was greater than the predicted value. However, the presence of understory litter decelerated the mass loss and did not affect N and P releases from the pine litter. In the poplar stand, litter mixture presented a positive non-additive effect on litter mass loss and P release, but an addition effect on N release. The presence of understory species accelerated only N release of poplar litter. Moreover, the responses of mass loss and N and P releases of understory litter in the mixtures varied with species in both pine and poplar plantations. Our results suggest that the effects of understory species on tree litter decomposition vary with tree species, and also highlight the importance of understory species in litter decomposition and nutrient cycles in forest ecosystems.


Subject(s)
Pinus sylvestris/metabolism , Populus/metabolism , Trees/metabolism , Biomass , China , Pinus sylvestris/chemistry , Pinus sylvestris/growth & development , Populus/chemistry , Populus/growth & development , Species Specificity , Trees/chemistry , Trees/growth & development
2.
Ying Yong Sheng Tai Xue Bao ; 23(5): 1188-94, 2012 May.
Article in Chinese | MEDLINE | ID: mdl-22919826

ABSTRACT

A full factorial experiment was conducted to study the effects of understory removal and nitrogen addition (8 g x m(-2)) on the soil NO(3-)-N and NH(4+)-N concentrations, potential net nitrogen mineralization rate (PNM) and nitrification rate (PNN), microbial biomass C (MBC) and N (MBN), MBC/MBN, urease and acid phosphomonoesterase activities, and Olsen-P concentration in a Pinus sylvestris var. mongolica plantation in Keerqin Sandy Land during a growth season. Understory removal decreased the soil NH(4+)-N concentration, PNM, MBC, and MBN/MBN significantly, increased the soil Olsen-P concentration, but had little effects on the soil NO(3-)-N concentration, PNN, and urease and acid phosphomonoesterase activities. Nitrogen addition increased the soil NO(3-)-N concentration, PNM and PNN significantly, but had little effects on the other test properties. The interaction between understory removal and nitrogen addition had significant effects on the soil NH(4+)-N concentration, but little effects on the soil NO(3-)-N concentration. However, the soil NO(3-)-N concentration in the plots of understory removal with nitrogen addition was increased by 27%, compared with the plots of nitrogen addition alone, which might lead to the leaching of NO3-. It was suggested that understory vegetation could play an important role in affecting the soil chemical and biological properties in Mongolian pine plantations, and hence, the importance of understory vegetation should not be neglected when the forest management and restoration were implemented.


Subject(s)
Ecosystem , Forestry/methods , Nitrogen/chemistry , Pinus sylvestris/growth & development , Soil Microbiology , Soil/chemistry , Artemisia/drug effects , Artemisia/growth & development , Cannabis/drug effects , Cannabis/growth & development , Carbon/analysis , China , Conservation of Natural Resources , Desert Climate , Fertilizers , Nitrogen/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...