Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
J Colloid Interface Sci ; 673: 267-274, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38875792

ABSTRACT

Catalysts composed of nanocluster and single-atom (SA) were extensively used to enhance electrocatalytic water splitting performance, whereas study of their photocatalytic hydrogen (H2) evolution activity was limited. Herein, carbon nitride (CN) decorated by ruthenium (Ru) cocatalysts existed as SA + cluster, cluster + nanoparticles (NPs), and NPs were prepared by impregnation and calcination processes. The correlation between existential form, content of Ru cocatalyst and H2 evolution rate were carefully discussed. It was found that Ru NPs were favor for water molecule adsorption, whereas Ru SAs and clusters facilitated H2 desorption. Theoretical calculations revealed that Ru clusters + NPs cocatalyst were beneficial for H* intermediate formation. Water splitting tests found that 1.07 wt% Ru NPs + cluster modified CN showed the highest H2 evolution rate of 13.64 mmol h-1 g-1, which was 266.4 and 1.5 times higher than those of CN and Ru NPs (2.33 wt%) decorated CN, respectively. This work deeply reveals the influences of existential form of Ru cocatalysts on photocatalytic water splitting of CN, and provides thought in designing new cocatalysts to largely enhance H2 evolution.

2.
Chemosphere ; 361: 142530, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851511

ABSTRACT

Chiroptical sensing with real-time colorimetrical detection has been emerged as quantifiable properties, enantioselective responsiveness, and optical manipulation in environmental monitoring, food safety and other trace identification fields. However, the sensitivity of chiroptical sensing materials remains an immense challenge. Here, we report a dynamically crosslinking strategy to facilitate highly sensitive chiroptical sensing material. Chiral nematic cellulose nanocrystals (CNC) were co-assembled with amino acid by a two-step esterification, of which a precisely tunable helical pitch, a unique spiral conformation with hierarchical and numerous active sites in sensing performance could be trigged by dynamic covalent bond on amines. Such a CNC/amino acid chiral optics features an ultra-trace amount of 0.08 mg/m3 and a high sensitivity of 60 nm/(mg/m3) for formaldehyde gas at a molecule level detection, which is due to the three synergistic adsorption enhancement of dynamic covalent bonded interaction, hydrogen bonded interaction and van der Waals interaction. Meanwhile, an enhancement hierarchical adsorption of CNC/amino acid chiral materials can be readily representative to the precise helical pitch and colorimetrical switch for sensitive visualization reorganization.


Subject(s)
Cellulose , Nanoparticles , Volatile Organic Compounds , Cellulose/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Nanoparticles/chemistry , Environmental Monitoring/methods , Amino Acids/analysis , Amino Acids/chemistry , Colorimetry/methods , Stereoisomerism , Formaldehyde/chemistry , Formaldehyde/analysis , Adsorption
3.
Signal Transduct Target Ther ; 9(1): 148, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890298

ABSTRACT

Penpulimab is an anti-programmed cell death-1 (PD-1) IgG1 antibody with no Fc gamma receptor (FcγR) binding activity, and thus theoretically reduced immune-related adverse events (irAEs) while maintaining efficacy. This single-arm, phase II trial conducted across 20 tertiary care centers in China enrolled adult patients with metastatic nasopharyngeal carcinoma (NPC) who had failed two or more lines of previous systemic chemotherapy. Patients received 200-mg penpulimab intravenously every 2 weeks (4 weeks per cycle) until disease progression or intolerable toxicities. The primary endpoint was objective response rate (ORR) per RECIST (version 1.1), as assessed by an independent radiological review committee. The secondary endpoints included progression-free survival (PFS) and overall survival (OS). One hundred thirty patients were enrolled and 125 were efficacy evaluable. At the data cutoff date (September 28, 2022), 1 patient achieved complete response and 34 patients attained partial response. The ORR was 28.0% (95% CI 20.3-36.7%). The response was durable, with 66.8% still in response at 9 months. Thirty-three patients (26.4%) were still on treatment. The median PFS and OS were 3.6 months (95% CI = 1.9-7.3 months) and 22.8 months (95% CI = 17.1 months to not reached), respectively. Ten (7.6%) patients experienced grade 3 or higher irAEs. Penpulimab has promising anti-tumor activities and acceptable toxicities in heavily pretreated metastatic NPC patients, supporting further clinical development as third-line treatment of metastatic NPC.


Subject(s)
Nasopharyngeal Carcinoma , Neoplasm Metastasis , Programmed Cell Death 1 Receptor , Humans , Male , Middle Aged , Female , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/pathology , Adult , Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects
4.
RSC Adv ; 14(23): 16349-16357, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38812824

ABSTRACT

Molecular hybridization is a widely employed technique in medicinal chemistry for drug modification, aiming to enhance pharmacological activity and minimize side effects. The combination of an indole ring and imidazole[2,1-b]thiazole has shown promising potential as a group that exhibits potent anti-inflammatory effects. In this study, we designed and synthesized a series of derivatives comprising indole-2-formamide benzimidazole[2,1-b]thiazole to evaluate their impact on LPS-induced production of pro-inflammatory cytokines NO, IL-6, and TNF-α release, as well as iron death in RAW264.7 cells. The findings revealed that most compounds effectively inhibited LPS-induced production of pro-inflammatory cytokines NO, IL-6, and TNF-α release in RAW264.7 cells. Compound 13b exhibited the most potent anti-inflammatory activity among the tested compounds. The results of the cytotoxicity assay indicated that compound 13b was nontoxic. Additionally, compound 13b was found to elevate the levels of ROS, MDA, and Fe2+, while reducing GSH content, thereby facilitating the iron death process. Consequently, compound 13b showed promise for future development as an anti-inflammatory drug.

5.
J Colloid Interface Sci ; 667: 433-440, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38640662

ABSTRACT

In this work, Br, K-doped and cyano group-rich carbon nitride (CN) were prepared via pyrolysis of molten urea and 6-Bromopyridine-3-carbaldehyde, followed by re-calcination with potassium thiocyanate. The hydrogen peroxide (H2O2) evolution and in situ tetracycline (TC) mineralization performances of the prepared samples were studied. The optimal sample could produce 9127 µmol g-1 h-1 H2O2 from 10 vol% ethanol solution and air atmosphere, which was 10.9 times higher than that of pristine CN. With addition of 4 mg L-1 Fe2+ ions, 97.2% of TC (10 mg L-1) and 98.7% of total organic carbon were removed in 30 min under the actions of holes, hydroxyl and superoxide radicals. The high H2O2 yield and TC mineralization ratio were attributed to the increased light absorption, efficient electrons-holes separation, enhanced surface O2 adsorption (0.3878 mmol g-1), and accelerated conversion from Fe3+ to Fe2+ ions. Meanwhile, the system possessed good reusability in H2O2 evolution and TC removal. It is expected that this work can provide new ideas to design CN-based photo-Fenton system to treat wastewater.

6.
Commun Biol ; 7(1): 505, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678117

ABSTRACT

Alpha-fetoprotein (AFP), a serum glycoprotein, is expressed during embryonic development and the pathogenesis of liver cancer. It serves as a clinical tumor marker, function as a carcinogen, immune suppressor, and transport vehicle; but the detailed AFP structural information has not yet been reported. In this study, we used single-particle cryo-electron microscopy(cryo-EM) to analyze the structure of the recombinant AFP obtained a 3.31 Å cryo-EM structure and built an atomic model of AFP. We observed and identified certain structural features of AFP, including N-glycosylation at Asn251, four natural fatty acids bound to distinct domains, and the coordination of metal ions by residues His22, His264, His268, and Asp280. Furthermore, we compared the structural similarities and differences between AFP and human serum albumin. The elucidation of AFP's structural characteristics not only contributes to a deeper understanding of its functional mechanisms, but also provides a structural basis for developing AFP-based drug vehicles.


Subject(s)
Fatty Acids , Models, Molecular , alpha-Fetoproteins , Humans , alpha-Fetoproteins/metabolism , alpha-Fetoproteins/chemistry , Binding Sites , Cryoelectron Microscopy , Fatty Acids/metabolism , Glycosylation , Metals/metabolism , Metals/chemistry , Protein Conformation , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry
7.
Dalton Trans ; 53(16): 7131-7141, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38568717

ABSTRACT

Spatially-ordered 1D nanocrystal-based semiconductor nanostructures possess distinct merits for photocatalytic reaction, including large surface area, fast carrier separation, and enhanced light scattering and absorption. Nevertheless, establishing a valid photo-carrier transmission channel is still crucial yet challenging for semiconductor heterostructures to realize efficient photocatalysis. In this work, spatially ordered NiOOH-ZnS/CdS heterostructures were constructed by sequential ZnS coating and NiOOH photo-deposition on multi-armed CdS, which consists of {112̄0}-faceted wurtzite nanorods grown epitaxially on {111}-faceted zinc blende core. Intriguingly, the surface photovoltage spectroscopy and PbO2 photo-deposition results suggest that the photogenerated holes of CdS were first transferred to the Zn-vacancy level of ZnS and then to NiOOH, as driven by the built-in electric field between ZnS and CdS and the hole-extracting effect of the NiOOH cocatalyst, leading to the efficient charge separation of NiOOH-ZnS/CdS. With visible-light (λ > 420 nm) irradiation, NiOOH-ZnS/CdS exhibited a distinguished H2-evolution rate of 152.20 mmol g-1 h-1 (apparent quantum efficiency of 40.9% at 420 nm), approximately 18 folds that of 3 wt% Pt-loaded CdS and much higher than that of ZnS/CdS and NiOOH-CdS counterparts as well as the most reported CdS-containing photocatalysts. Moreover, the cycling and long-term H2 generation tests manifested the outstanding photocatalyst stability of NiOOH-ZnS/CdS. The study results presented here may propel the controllable design of highly-active nanomaterials for solar conversion and utilization.

8.
Talanta ; 272: 125819, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38417372

ABSTRACT

Live food-borne pathogens, featured with rapid proliferative capacity and high pathogenicity, pose an emerging food safety and public health crisis. The high-sensitivity detection of pathogens is particularly imperative yet remains challenging. This work developed a functionalized nylon swab array with enhanced affinity for Salmonella typhimurium (S.T.) for high-specificity ATP bioluminescence-based S.T. detection. In brief, the nylon swabs (NyS) were turned to N-methylation nylon (NyS-OH) by reacting with formaldehyde, and NyS-OH were further converted to NyS-CA by reacting with carboxylic groups of citric acid (CA) and EDC/NHS solution, for altering the NyS surface energy to favor biomodification. The antibody-immobilized nylon swab (MNyS-Ab) was ready for S.T.-specific adsorption. Three prepared MNyS-Ab were installed on a stirrer to form an MNyS-Ab array, allowing for on-site enrichment of S.T. through absorptive extraction. The enriched S.T. was quantified by measuring the bioluminescence of ATP released from cell lysis utilizing a portable ATP bioluminescence sensor. The bioassay demonstrated a detectable range of 102-107 CFU mL-1 with a detection limit (LOD) of 8 CFU/mL within 35 min. The signal of single MNyS-Ab swabs was 500 times stronger than the direct detection of 106 CFU/mL S.T. The MNyS-Ab array exhibited a 100-fold increase in extraction level compared to a single MNyS. This combination of a portable bioluminescent sensor and modified nylon swab array offers a novel strategy for point-of-care testing of live S.T. strains. It holds promise for high-sensitivity measurements of other pathogens and viruses.


Subject(s)
Nylons , Salmonella typhimurium , Antibodies , Specimen Handling , Adenosine Triphosphate
9.
Int J Surg ; 110(4): 2275-2287, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38265431

ABSTRACT

BACKGROUND: Neoadjuvant chemoimmunotherapy (NACI) is promising for resectable nonsmall cell lung cancer (NSCLC), but predictive biomarkers are still lacking. The authors aimed to develop a model based on pretreatment parameters to predict major pathological response (MPR) for such an approach. METHODS: The authors enrolled operable NSCLC treated with NACI between March 2020 and May 2023 and then collected baseline clinical-pathology data and routine laboratory examinations before treatment. The efficacy and safety data of this cohort was reported and variables were screened by Logistic and Lasso regression and nomogram was developed. In addition, receiver operating characteristic curves, calibration curves, and decision curve analysis were used to assess its power. Finally, internal cross-validation and external validation was performed to assess the power of the model. RESULTS: In total, 206 eligible patients were recruited in this study and 53.4% (110/206) patients achieved MPR. Using multivariate analysis, the predictive model was constructed by seven variables, prothrombin time (PT), neutrophil percentage (NEUT%), large platelet ratio (P-LCR), eosinophil percentage (EOS%), smoking, pathological type, and programmed death ligand-1 (PD-L1) expression finally. The model had good discrimination, with area under the receiver operating characteristic curve (AUC) of 0.775, 0.746, and 0.835 for all datasets, cross-validation, and external validation, respectively. The calibration curves showed good consistency, and decision curve analysis indicated its potential value in clinical practice. CONCLUSION: This real world study revealed favorable efficacy in operable NSCLC treated with NACI. The proposed model based on multiple clinically accessible parameters could effectively predict MPR probability and could be a powerful tool in personalized medication.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neoadjuvant Therapy , Nomograms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Female , Male , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Middle Aged , Neoadjuvant Therapy/methods , Aged , Immunotherapy/methods , Retrospective Studies , Treatment Outcome , ROC Curve
10.
Hepatol Int ; 18(1): 4-31, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37864725

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignancies and the third leading cause of cancer-related deaths globally. Hepatic arterial infusion chemotherapy (HAIC) treatment is widely accepted as one of the alternative therapeutic modalities for HCC owing to its local control effect and low systemic toxicity. Nevertheless, although accumulating high-quality evidence has displayed the superior survival advantages of HAIC of oxaliplatin, fluorouracil, and leucovorin (HAIC-FOLFOX) compared with standard first-line treatment in different scenarios, the lack of standardization for HAIC procedure and remained controversy limited the proper and safe performance of HAIC treatment in HCC. Therefore, an expert consensus conference was held on March 2023 in Guangzhou, China to review current practices regarding HAIC treatment in patients with HCC and develop widely accepted statements and recommendations. In this article, the latest evidence of HAIC was systematically summarized and the final 22 expert recommendations were proposed, which incorporate the assessment of candidates for HAIC treatment, procedural technique details, therapeutic outcomes, the HAIC-related complications and corresponding treatments, and therapeutic scheme management.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Treatment Outcome , Hepatic Artery/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Fluorouracil/therapeutic use , Infusions, Intra-Arterial
11.
Small ; : e2308613, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072783

ABSTRACT

Due to the shortage of pure water resources, seawater electrolysis is a promising strategy to produce green hydrogen energy. To avoid chlorine oxidation reactions (ClOR) and the production of more corrosive hypochlorite, enhancing OER electrocatalyst activity is the key to solving the above problem. Considering that transition metal phosphides (TMPs) are promising OER eletrocatalysts for seawater splitting, a method to regulate the electronic structure of FeP by introducing Mn heteroatoms and phosphorus vacancy on it (Mn-FePV ) is developed. As an OER electrocatalyst in seawater solution, the synthesized Mn-FePV achieves extremely low overpotentials (η500  = 376, η1000  = 395 mV). In addition, the Pt/C||Mn-FePV couple only requires the voltage of 1.81 V to drive the current density of 1000 mA cm-2 for overall seawater splitting. The density functional theory (DFT) calculation shows that Mn-FePV (0.21 e- ) has more charge transfer number compared with FeP (0.17 e- ). In-situ Raman analysis shows that phosphorus vacancy and Mn doping can synergistically regulate the electronic structure of FeP to induce rapid phase reconstruction, further improving the OER performance of Mn-FePV . The new phase species of FeOOH is confirmed to can enhance the adsorption kinetics of OER intermediates.

12.
Anal Chem ; 95(46): 17064-17072, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37943962

ABSTRACT

Plyfluoroalkyl substance (PFAS), featured with incredible persistence and chronic toxicity, poses an emerging ecological and environmental crisis. Although significant progress has been made in PFAS metabolism in vivo, the underlying mechanism of metabolically active organ interactions in PFAS bioaccumulation remains largely unknown. We developed a microfluidic-based assay to recreate the intestine-vessel-liver interface in three dimensions, allowing for high-resolution, real-time images and precise quantification of intestine-vessel-liver interactions in PFAS biotransformation. In contrast to the scattered arrangement of vascular endothelium on the traditional d-polylysine-modified two-dimensional (2D) plate, the microtubules in our three-dimensional (3D) platform formed a dense honeycomb network through the ECM, with longer tubular structures. Additionally, the slope culture of epithelial cells in our platform exhibited a closely arranged and thicker cell layer than the planar culture. To dynamically monitor the metabolic crosstalk in the intestinal-vascular endothelium-liver interaction under exposure to fluorotelomer alcohols (FTOHs), we combined the chip with a solid-phase extraction-mass spectrometry (SPE-MS) system. Our findings revealed that endothelial cells were involved in the metabolic process of FTOHs. The transformation of intestinal epithelial and hepatic epithelial cells produces toxic metabolite fluorotelomer carboxylic acids (FTCAs), which circulate to endothelial cells and affect angiogenesis. This system shows promise as an enhanced surrogate model and platform for studying pollutant exposure as well as for biomedical and pharmaceutical research.


Subject(s)
Endothelial Cells , Fluorocarbons , Endothelial Cells/metabolism , Microfluidics , Fluorocarbons/analysis , Biotransformation , Liver/metabolism
13.
Anal Chem ; 95(35): 13391-13399, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37610722

ABSTRACT

Early detection of foodborne bacteria is urgently needed to ensure food quality and to avoid the outbreak of foodborne bacterial diseases. Here, a kind of metal-organic framework (Zr-MOF) modified with Pt nanoparticles (Pt-PCN-224) was designed as a peroxidase-like signal amplifier for microfluidic biosensing of foodborne bacteria. Taking Escherichia coli (E. coli) O157:H7 as a model, a linear range from 2.93 × 102 to 2.93 × 108 CFU/mL and a limit of detection of 2 CFU/mL were obtained. The whole detection procedure was integrated into a single microfluidic chip. Water, milk, and cabbage samples were successfully detected, showing consistency with the results of the standard culture method. Recoveries were in the range from 90 to 110% in spiked testing. The proposed microfluidic biosensor realized the specific and sensitive detection of E. coli O157:H7 within 1 h, implying broad prospects of MOF with biomimetic enzyme activities for biosensing.


Subject(s)
Escherichia coli O157 , Foodborne Diseases , Humans , Microfluidics , Bacteria , Amplifiers, Electronic , Biomimetics
14.
Anal Chem ; 95(35): 13368-13375, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37610723

ABSTRACT

A multifunctional platform that meets the demands of both bacterial detection and elimination is urgently needed because of their harm to human health. Herein, a "sense-and-treat" biosensor was developed by using immunomagnetic beads (IMBs) and AgPt nanoparticle-decorated PCN-223-Fe (AgPt/PCN-223-Fe, PCN stands for porous coordination network) metal-organic frameworks (MOFs). The synthesized AgPt/PCN-223-Fe not only exhibited excellent peroxidase-like activity but also could efficiently kill bacteria under near infrared (NIR) irradiation. This biosensor enabled the colorimetric detection of E. coli O157:H7 in the range of 103-108 CFU/mL with a limit of detection of 276 CFU/mL, accompanied with high selectivity, good reproducibility, and wide applicability in diverse real samples. Furthermore, the biosensor possessed a highly effective antibacterial rate of 99.94% against E. coli O157:H7 under 808 nm light irradiation for 20 min. This strategy can provide a reference for the design of novel versatile biosensors for bacterial discrimination and antibacterial applications.


Subject(s)
Escherichia coli O157 , Metal-Organic Frameworks , Humans , Reproducibility of Results , Bacteria , Anti-Bacterial Agents
15.
Explor Target Antitumor Ther ; 4(3): 519-536, 2023.
Article in English | MEDLINE | ID: mdl-37455832

ABSTRACT

Hepatocellular carcinoma (HCC) is a complex process that plays an important role in its progression. Abnormal glucose metabolism in HCC cells can meet the nutrients required for the occurrence and development of liver cancer, better adapt to changes in the surrounding microenvironment, and escape the attack of the immune system on the tumor. There is a close relationship between reprogramming of glucose metabolism and immune escape. This article reviews the current status and progress of glucose metabolism reprogramming in promoting immune escape in liver cancer, aiming to provide new strategies for clinical immunotherapy of liver cancer.

16.
Biol Lett ; 19(7): 20230078, 2023 07.
Article in English | MEDLINE | ID: mdl-37463654

ABSTRACT

Straight-tusked elephants (genus: Palaeoloxodon) including their island dwarf forms are extinct enigmatic members of the Pleistocene megafauna and the most common Pleistocene elephants after the mammoths. Their taxonomic placement has been revised several times. Using palaeogenomic evidence, previous studies suggested that the European P. antiquus has a hybrid origin, but no molecular data have been retrieved from their Asian counterparts, leaving a gap in our knowledge of the global phylogeography and population dynamics of Palaeoloxodon. Here, we captured a high-quality complete mitogenome from a Pleistocene Elephantidae molar (CADG841) from Northern China, which was previously morphologically assigned to the genus Elephas (Asian elephant), and partial mitochondrial sequences (838 bp) of another Palaeoloxodon sp. specimen (CADG1074) from Northeastern China. We found that both Chinese specimens cluster with a 244 000-year-old P. antiquus (specimen name: WE) from Western Europe, suggesting that this clade may represent a population with a large spatial span across Eurasia. Based on the fossil record and the molecular dating of both the divergences of different Palaeoloxodon mitochondrial clades and previously determined hybridization events, we propose that this Eurasian-wide WE clade provides evidence for an earlier migration and/or another hybridization event that happened in the evolutionary history of straight-tusked elephants.


Subject(s)
Elephants , Animals , Biological Evolution , DNA, Mitochondrial/genetics , Elephants/genetics , Fossils , Phylogeny , Phylogeography
17.
J Colloid Interface Sci ; 650(Pt B): 1671-1678, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37499623

ABSTRACT

In this study, nickel hydroxide (Ni(OH)2) was employed to modify potassium (K)-doped graphitic carbon nitride (g-C3N4, CN) for enhancing photocatalytic CO2 reduction. The light absorption and charge separation performances of CN were enhanced after modification. Experiments and theoretical calculations indicated that the loaded Ni(OH)2 could gather electrons, facilitate adsorption and activation of CO2. The optimized photocatalyst exhibited high CO2 reductive rate with CO and CH4 yields of 42.6 and 3.5 µmol g-1, respectively after 3 h irradiation in the presence of 0.5 mL water, which was 1.4 and 4.6 times higher than the yields on K-doped CN and Ni(OH)2-decorated CN, respectively. This work provides new thought for enhancing CO2 reductive performance of CN.

18.
Oncologist ; 28(12): e1239-e1247, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37329569

ABSTRACT

BACKGROUND: For patients with unresectable hepatocellular carcinoma (HCC), the first-line therapeutic options are still relatively limited, and treatment outcomes remain poor. We aimed to assess the efficacy and safety of anlotinib combined with toripalimab as first-line therapy for unresectable HCC. METHODS: In this single-arm, multicenter, phase II study (ALTER-H-003), patients with advanced HCC without previous systemic anticancer therapy were recruited. Eligible patients were given anlotinib (12 mg on days 1-14) combined with toripalimab (240 mg on day 1) in a 3-week cycle. The primary endpoint was the objective response rate (ORR) by immune-related Response Evaluation Criteria in Solid Tumours (irRECIST)/RECIST v1.1 and modified RECIST (mRECIST). Secondary endpoints included disease control rate (DCR), duration of response (DoR), progression-free survival (PFS), overall survival (OS), and safety. RESULTS: Between January 2020 and Jul 2021, 31 eligible patients were treated and included in the full analysis set. At data cutoff (January 10, 2023), the ORR was 29.0% (95% CI: 12.1%-46.0%) by irRECIST/RECIST v1.1, and 32.3% (95% CI: 14.8%-49.7%) by mRECIST criteria, respectively. Confirmed DCR and median DoR by irRECIST/RECIST v1.1 and mRECIST criteria were 77.4 % (95% CI: 61.8%-93.0%) and not reached (range: 3.0-22.5+ months), respectively. Median PFS was 11.0 months (95% CI: 3.4-18.5 months) and median OS was 18.2 months (95% CI: 15.8-20.5 months). Of the 31 patients assessed for adverse events (AEs), the most common grade ≥ 3 treatment-related AEs were hand-foot syndrome (9.7%, 3/31), hypertension (9.7%, 3/31), arthralgia (9.7%, 3/31), abnormal liver function (6.5%, 2/31), and decreased neutrophil counts (6.5%, 2/31). CONCLUSIONS: Anlotinib combined with toripalimab showed promising efficacy and manageable safety in Chinese patients with unresectable HCC in the first-line setting. This combination therapy may offer a potential new therapeutic approach for patients with unresectable HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Prospective Studies , Liver Neoplasms/drug therapy
19.
Lab Chip ; 23(13): 3062-3069, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37282617

ABSTRACT

Over 9000 types of per- and polyfluoroalkyl substances (PFASs) have been produced that exhibit environmental persistence, bioaccumulation and biotoxicity, and pose a potential hazard to human health. Although metal-organic frameworks (MOFs) are promising structure-based materials for adsorbing PFASs, the enormous structural diversity and variability of the pharmacologic action of PFASs present challenges to the development of structure-based adsorbents. To address this issue, we propose an in situ platform for the high-throughput identification of efficient MOF sorbents that can adsorb PFASs and their metabolism using a filter-chip-solid phase extraction-mass spectrometry (SPE-MS) system. As a proof of concept, we screened BUT-16 as an attractive material for in situ fluorotelomer alcohol (FTOH) adsorption. The results demonstrated that FTOH molecules were adsorbed around the surface of the large hexagonal pores of BUT-16 by forming multiple hydrogen bonding interactions with its Zr6 clusters. The FTOH removal efficiency of the BUT16 filter was 100% over a period of 1 min. To determine the FTOH metabolism effects in different organs, HepG2 human hepatoma, HCT116 colon cancer, renal tubular HKC, and vascular endothelial HUVEC cells were cultured on a microfluidic chip, and SPE-MS was used to track a variety of cell metabolites in real time. Overall, the filter-Chip-SPE-MS system is a versatile and robust platform for the real-time monitoring of noxious pollutant detoxification, biotransformation, and metabolism, which facilitates pollutant antidote development and toxicology assay.


Subject(s)
Environmental Pollutants , Fluorocarbons , Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/toxicity , Microfluidics , Solid Phase Extraction , Fluorocarbons/toxicity , Environmental Pollutants/analysis
20.
J Cancer Res Clin Oncol ; 149(12): 10149-10160, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37266662

ABSTRACT

BACKGROUND: The progestin and adipoQ receptors (PAQRs) family contains 11 genes involved in the regulation of metabolism and cancer development. However, a comprehensive understanding of the role of PAQRs in cancer remains largely scarce, and the associations between their expression levels and immune signatures also need to be researched. METHODS: Here, we applied pan-cancer analysis to explore the associations between PAQRs expression and survival, tumor microenvironment (TME), and drug sensitivity from the UCSC Xena and CellMiner databases. Besides, we further studied the expression, survival and somatic mutations of PAQRs in lung cancer (LC) from TCGA database. RESULTS: The results showed that PAQRs had significant heterogeneity with some upregulation and some downregulation in most tumors. Specifically, compared with PAQR3/5/6/9 and MMD2, ADIPOR1/2, PAQR4/7/8 and MMD had higher levels of average expression in all tumor types. PAQRs expression was greatly correlated with survival, immune subtypes, TME, and drug sensitivity. Furthermore, this research concentrated on analyzing the relationship of PAQRs expression with LC prognosis, and proved that ADIPOR2, PAQR4/9 and MMD were independent prognostic factors for LC patients. Finally, based on somatic mutation data, the genetic mutations in LC patients were majorly missense mutations, and TP53 and TTN had the top two highest mutation frequencies. CONCLUSION: Collectively, PAQRs may serve as robust biomarkers to predict the prognosis and guide immunotherapy of tumors, especially LC, which enables novel ways for improving cancer treatment.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/genetics , Databases, Factual , Down-Regulation , Immunotherapy , Mutation , Tumor Microenvironment , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...