Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Chromatogr ; 38(5): e5838, 2024 May.
Article in English | MEDLINE | ID: mdl-38342982

ABSTRACT

Strobilanthes sarcorrhiza (CTS) is a medicinal plant with various pharmacological effects such as tonifying kidney and anti-inflammatory. However, the chemical composition and difference of its four parts (leaves, stems, rhizomes, and root tubers) have been rarely reported. In this study, ultrafast flow liquid chromatography coupled with quadrupole-time-of-flight MS was applied to analyze the chemical profile of CTS and identify 55 compounds, including terpenoids, phenylethanol glycosides, fatty acid derivatives, chain glycosides, flavonoid glycosides, and others. Among these compounds, 34 compounds were first identified in CTS. They were mainly terpenoids, phenylethanol glycosides, fatty acid derivatives, and so forth. Multivariate statistical analysis, such as principal component analysis and orthogonal partial least squares-discriminant analysis were also used to evaluate the difference in chemical compounds from the four parts of CTS. The results showed that phenylethanol glycosides were the main compounds of the underground parts, while terpenoids were the main compounds of the aboveground parts. This study revealed the chemical diversity and similarity of CTS and suggested that the rhizomes could be used as an alternative medicinal part to improve the resource utilization of CTS.


Subject(s)
Mass Spectrometry , Multivariate Analysis , Mass Spectrometry/methods , Chromatography, Liquid/methods , Plant Extracts/chemistry , Terpenes/analysis , Terpenes/chemistry , Glycosides/analysis , Glycosides/chemistry , Chromatography, High Pressure Liquid/methods
2.
Front Plant Sci ; 14: 1335843, 2023.
Article in English | MEDLINE | ID: mdl-38445102

ABSTRACT

Aims: Citruses often occur with imbalance in iron nutrition in coastal saline-alkali lands, which severely limits the yield and quality of the fruit. In the rhizosphere, the salt content plays a crucial role in reducing uptake of iron, as well as the activity and abundance of bacteria. However, few studies have explored how salt content affects the effectiveness of iron and the community structure of bacteria across different vertical spatial scales. Methods: We investigated the citrus rhizosphere (0-30 cm) and bulk (0-60 cm) soil microenvironments of the coastal saline soil were analyzed using the 16S rRNA amplicon and inductively coupled plasma-optical emission spectroscopy. Results: We found that the nutrient-related elements in the rhizosphere and bulk soil decreased with increasing soil depth, while the salinity-related elements showed the opposite trend. The nutrient-related element content in the rhizosphere was higher than that in the bulk, whereas the salinity-alkaline-related element content was lower than that in the bulk. The structure and diversity of bacterial communities are affected by the rhizosphere and soil depth. In the bulk, there are enriched bacteria such as WB1-A12, Nitrospiraceae and Anaerolineae that are tolerant to salt-alkali stress. In the rhizosphere, bacteria that promote plant nutrient absorption and secretion of iron carriers, such as Pseudomonas, Streptomyces, and Duganella, are prominent. Conclusions: The soil depth and rhizosphere affect soil nutrients and saline alkali-related factors. Changes in soil depth and rhizosphere determine the structure and diversity of bacterial communities. Rhizosphere enhances iron absorption promoting bacteria to alleviate iron deficiency stress in saline-alkali soils. Our results indicate that citrus roots maybe can resist the stress of iron deficiency in saline-alkali soils by enhancing iron absorption promoting bacteria.

3.
Life (Basel) ; 12(5)2022 May 23.
Article in English | MEDLINE | ID: mdl-35629434

ABSTRACT

Zn pollution is a potential toxicant for agriculture and the environment. Sedum alfredii is a Zn/Cd hyperaccumulator found in China and has been proven as a useful resource for the phytoremediation of Zn-contaminated sites. However, the molecular mechanism of Zn uptake in S. alfredii is limited. In this study, the function of SaPCR2 on Zn uptake in S. alfredii was identified by gene expression analysis, yeast function assays, Zn accumulation and root morphology analysis in transgenic lines to further elucidate the mechanisms of uptake and translocation of Zn in S. alfredii. The results showed that SaPCR2 was highly expressed in the root elongation zone of the hyperaccumulating ecotype (HE) S. alfredii, and high Zn exposure downregulated the expression of SaPCR2 in the HE S. alfredii root. The heterologous expression of SaPCR2 in yeast suggested that SaPCR2 was responsible for Zn influx. The overexpression of SaPCR2 in the non-hyperaccumulating ecotype (NHE) S. alfredii significantly increased the root uptake of Zn, but did not influence Mn, Cu or Fe. SR-µ-XRF technology showed that more Zn was distributed in the vascular buddle tissues, as well as in the cortex and epidermis in the transgenic lines. Root morphology was also altered after SaPCR2 overexpression, and a severe inhibition was observed. In the transgenic lines, the meristematic and elongation zones of the root were lower compared to the WT, and Zn accumulation in meristem cells was also reduced. These results indicate that SaPCR2 is responsible for Zn uptake, and mainly functions in the root elongation zone. This research on SaPCR2 could provide a theoretical basis for the use of genetic engineering technology in the modification of crops for their safe production and biological enhancement.

SELECTION OF CITATIONS
SEARCH DETAIL