Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Water Res ; 267: 122543, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39378729

ABSTRACT

Cyclodextrins (CD) entrapped in nanofiber composite membranes are potential selective adsorbing materials to remove steroid hormone (SHs) micropollutants from water. This study aims to elucidate the role of CD macrocyclic host type on the SHs inclusion complexation and uptake in filtration. Three CD types (α, ß, and γ) are cross-linked with epichlorohydrin to form polymers (αCDP, ßCDP and γCDP) and entrapped into a nanofiber composite membrane by electrospinning. TGA analysis confirmed the CD entrapment into the nanofiber without loss of CD molecules during filtration. The CD type plays a dominant role in controlling the removal of different SHs. A similar removal (range 33 to 50 %) was observed with αCDP, irrespective of the SH type. In contrast, removal and uptake dependent on SH type were observed for ß and γCDP, with the highest removal of 74 % for progesterone, followed by estradiol (46 %) and estrone (27 %) and the lowest removal of 3 % for testosterone. Molecular dynamic (MD) simulation revealed a stronger and more stable complex formed with ßCDP, as demonstrated by: i) the closer spatial distribution of SH molecules from the ßCDP cavity and, ii) the quantum chemistry calculations of the lower de-solvation energy (+6.0 kcal/mol), which facilitates the release of water molecules from interacting interface of CD molecule and hormone. Regarding γCDP, the highest de-solvation energy (+8.3 kcal/mol) poses an energetic barrier, which hinders the formation of the inclusion complex. In the case of αCDP, a higher interaction energy (-8.9 kcal/mol) compared to ßCDP (-4.9 kcal/mol) was obtained, despite the broader spatial distribution observed from the MD simulation attributed to a dominant hydrogen bonding interaction with the OH primary groups on the external surface cavity. The findings highlight the relevance of the CD type in designing selective adsorbing membranes for steroid hormone micropollutant uptake. Experimental results and MD simulation suggest that ßCD is the most suitable CD type for steroid hormone uptake, due to a more stable and stronger inclusion complexation than α and γCD.

2.
J Hazard Mater ; 476: 134765, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38905981

ABSTRACT

Photocatalytic membrane reactors (PMRs) are a promising technology for micropollutant removal. Sunlight utilization and catalyst surface sites limit photodegradation. A poly(vinylidene fluoride) (PVDF) nanofiber composite membrane (NCM) with immobilized visible-light-responsive g-C3N4/Bi2MoO6 (BMCN) were developed. Photodegradation of steroid hormones with the PVDF-BMCN NCM was investigated with varying catalyst properties, operating conditions, and relevant solution chemistry under solar irradiation. Increasing CN ratio (0-65 %) enhanced estradiol (E2) degradation from 20 ± 10 to 75 ± 7 % due to improved sunlight utilization and photon lifetime. PVDF nanofibers reduced self-aggregation of catalysts. Hydraulic residence time and light intensity enhanced the photodegradation. With the increasing pH value, the E2 removal decreased from 84 ± 4 to 67 ± 7 % owing to electrical repulsion and thus reduced adsorption between catalysts and E2. A removal of 96 % can be attained at environmentally relevant feed concentration (100 ng.L-1) with a flux of 60 L.m-2.h-1, irradiance of 100 mW.cm-2, and 1 mg.cm-2 BMCN65 loading. This confirmed that heterojunction photocatalysts can enhance micropollutants degradation in PMRs.

SELECTION OF CITATIONS
SEARCH DETAIL