Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(3): 646-649, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300080

ABSTRACT

We report both theoretically and experimentally a process of optical intrinsic orbit-orbit interaction with a vortex-antivortex structure nested in a freely propagating light field. The orbit-orbit interaction is originating from the coupling between different vortices and antivortices. Based on this process, we reveal the resultant controllable orbital-angular-momentum Hall effect by considering a typical structure, which comprises a vortex-antivortex pair and another vortex (or antivortex) as a controllable knob. The intrinsic Hall effect can be spatially manipulated by appropriately engineering the orbit-orbit interaction, namely arranging the initial distribution of these elements. This work can find interesting potential applications. For example, it provides an effective technique for controllable paired photon generation.

2.
Opt Express ; 31(24): 40824-40835, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041373

ABSTRACT

The self-healing phenomenon of structured light beams has been comprehensively investigated for its important role in various applications including optical tweezing, superresolution imaging, and optical communication. However, for different structured beams, there are different explanations for the self-healing effect, and a unified theory has not yet been formed. Here we report both theoretically and experimentally a study of the self-healing effect of structured beams in lenslike media, this is, inhomogeneous lenslike media with a quadratic gradient index. By observing the appearance of a number of shadows of obstructed structured wave fields it has been demonstrated that their self-healing in inhomogeneous media are the result of superposition of fundamental traveling waves. We have found that self-healing of structured beams occurs in this medium and, interestingly enough, that the shadows created in the process present sinusoidal propagating characteristics as determined by the geometrical ray theory in lenslike media. This work provides what we believe to be a new inhomogenous environment to explain the self-healing effect and is expected to deepen understanding of the physical mechanism.

3.
Opt Express ; 26(14): 18721-18733, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-30114045

ABSTRACT

We demonstrate that the spatially diffractive properties of cylindrical vector beams could be controlled via linear interactions with anisotropic crystals. It is the first time to show experimentally that the diffraction of the vector beams can be either suppressed or enhanced significantly during propagation, depending on the sign of anisotropy. Importantly, it is also possible to create a linear non-spreading and shape-preserving vector beam, by vanishing its diffraction during propagation via strong anisotropy in a crystal. The manageable diffractive effect enables manipulating propagation dynamics of the circular Airy vector beams, i.e., their propagation trajectories can be dynamically controlled by weakening or enhancing self-acceleration of the Airy beam. We further demonstrate that the cylindrical vector beams with initially zero orbital angular momentum can be rotated either clockwise or anticlockwise, relying on the sign of the anisotropy.

SELECTION OF CITATIONS
SEARCH DETAIL
...