Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Anesthesiology ; 125(5): 1030-1043, 2016 11.
Article in English | MEDLINE | ID: mdl-27627816

ABSTRACT

BACKGROUND: AMPAkines augment the function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the brain to increase excitatory outputs. These drugs are known to relieve persistent pain. However, their role in acute pain is unknown. Furthermore, a specific molecular and anatomic target for these novel analgesics remains elusive. METHODS: The authors studied the analgesic role of an AMPAkine, CX546, in a rat paw incision (PI) model of acute postoperative pain. The authors measured the effect of AMPAkines on sensory and depressive symptoms of pain using mechanical hypersensitivity and forced swim tests. The authors asked whether AMPA receptors in the nucleus accumbens (NAc), a key node in the brain's reward and pain circuitry, can be a target for AMPAkine analgesia. RESULTS: Systemic administration of CX546 (n = 13), compared with control (n = 13), reduced mechanical hypersensitivity (50% withdrawal threshold of 6.05 ± 1.30 g [mean ± SEM] vs. 0.62 ± 0.13 g), and it reduced depressive features of pain by decreasing immobility on the forced swim test in PI-treated rats (89.0 ± 15.5 vs. 156.7 ± 18.5 s). Meanwhile, CX546 delivered locally into the NAc provided pain-relieving effects in both PI (50% withdrawal threshold of 6.81 ± 1.91 vs. 0.50 ± 0.03 g; control, n = 6; CX546, n = 8) and persistent postoperative pain (spared nerve injury) models (50% withdrawal threshold of 3.85 ± 1.23 vs. 0.45 ± 0.00 g; control, n = 7; CX546, n = 11). Blocking AMPA receptors in the NAc with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione inhibited these pain-relieving effects (50% withdrawal threshold of 7.18 ± 1.52 vs. 1.59 ± 0.66 g; n = 8 for PI groups; 10.70 ± 3.45 vs. 1.39 ± 0.88 g; n = 4 for spared nerve injury groups). CONCLUSIONS: AMPAkines relieve postoperative pain by acting through AMPA receptors in the NAc.


Subject(s)
Analgesics/pharmacology , Dioxoles/pharmacology , Nucleus Accumbens/drug effects , Pain, Postoperative/drug therapy , Piperidines/pharmacology , Receptors, AMPA/drug effects , Animals , Behavior, Animal/drug effects , Depression/prevention & control , Disease Models, Animal , Male , Neuralgia/drug therapy , Rats , Rats, Sprague-Dawley
2.
Mol Brain ; 8: 46, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26260133

ABSTRACT

BACKGROUND: A variety of pain conditions have been found to be associated with depressed mood in clinical studies. Depression-like behaviors have also been described in animal models of persistent or chronic pain. In rodent chronic neuropathic pain models, elevated levels of GluA1 subunits of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the nucleus accumbens (NAc) have been found to inhibit depressive symptoms. However, the effect of reversible post-surgical pain or inflammatory pain on affective behaviors such as depression has not been well characterized in animal models. Neither is it known what time frame is required to elicit AMPA receptor subunit changes in the NAc in various pain conditions. RESULTS: In this study, we compared behavioral and biochemical changes in three pain models: the paw incision (PI) model for post-incisional pain, the Complete Freund's Adjuvant (CFA) model for persistent but reversible inflammatory pain, and the spared nerve injury (SNI) model for chronic postoperative neuropathic pain. In all three models, rats developed depressive symptoms that were concurrent with the presentation of sensory allodynia. GluA1 levels at the synapses of the NAc, however, differed in these three models. The level of GluA1 subunits of AMPA-type receptors at NAc synapses was not altered in the PI model. GluA1 levels were elevated in the CFA model after a period (7 d) of persistent pain, leading to the formation of GluA2-lacking AMPA receptors. As pain symptoms began to resolve, however, GluA1 levels returned to baseline. Meanwhile, in the SNI model, in which pain persisted beyond 14 days, GluA1 levels began to rise after pain became persistent and remained elevated. In addition, we found that blocking GluA2-lacking AMPA receptors in the NAc further decreased the depressive symptoms only in persistent pain models. CONCLUSION: Our study shows that while both short-term and persistent pain can trigger depression-like behaviors, GluA1 upregulation in the NAc likely represents a unique adaptive response to minimize depressive symptoms in persistent pain states.


Subject(s)
Chronic Pain/complications , Nucleus Accumbens/metabolism , Protein Subunits/metabolism , Receptors, AMPA/metabolism , Animals , Behavior, Animal , Depression/etiology , Depression/metabolism , Freund's Adjuvant , Inflammation/complications , Male , Neuralgia/complications , Nucleus Accumbens/pathology , Protein Transport , Rats , Rats, Sprague-Dawley , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...