Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Microbiol Spectr ; 12(3): e0364523, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38319081

ABSTRACT

CRISPR-Cas technology has widely been applied to detect single-nucleotide mutation and is considered as the next generation of molecular diagnostics. We previously reported the combination of nucleic acid amplification (NAA) and CRISPR-Cas12a system to distinguish major severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. However, the mixture of NAA and CRISPR-Cas12a reagents in one tube could interfere with the efficiency of NAA and CRISPR-Cas12a cleavage, which in turn affects the detection sensitivity. In the current study, we employed a novel photoactivated CRISPR-Cas12a strategy integrated with recombinase polymerase amplification (RPA) to develop one-pot RPA/CRISPR-Cas12a genotyping assay for detecting SARS-CoV-2 Omicron sub-lineages. The new system overcomes the potential inhibition of RPA due to early CRISPR-Cas12a activation and cleavage of the target template in traditional one-pot assay using photocleavable p-RNA, a complementary single-stranded RNA to specifically bind crRNA and precisely block Cas12a activation. The detection can be finished in one tube at 39℃ within 1 h and exhibits a low limit of detection of 30 copies per reaction. Our results demonstrated that the photocontrolled one-pot RPA/CRISPR-Cas12a assay could effectively identify three signature mutations in the spike gene of SARS-CoV-2 Omicron variant, namely, R346T, F486V, and 49X, and distinguish Omicron BA.1, BA.5.2, and BF.7 sub-lineages. Furthermore, the assay achieved a sensitivity of 97.3% and a specificity of 100.0% and showed a concordance of 98.3% with Sanger sequencing results.IMPORTANCEWe successfully developed one-pot recombinase polymerase amplification/CRISPR-Cas12a genotyping assay by adapting photocontrolled CRISPR-Cas technology to optimize the conditions of nucleic acid amplification and CRISPR-Cas12a-mediated detection. This innovative approach was able to quickly distinguish severe acute respiratory syndrome coronavirus 2 Omicron variants and can be readily modified for detecting any nucleic acid mutations. The assay system demonstrates excellent clinical performance, including rapid detection, user-friendly operations, and minimized risk of contamination, which highlights its promising potential as a point-of-care testing for wide applications in resource-limiting settings.


Subject(s)
COVID-19 , Nucleic Acids , Humans , COVID-19/diagnosis , CRISPR-Cas Systems , SARS-CoV-2/genetics , Recombinases , RNA
2.
Front Microbiol ; 13: 1041789, 2022.
Article in English | MEDLINE | ID: mdl-36439830

ABSTRACT

Precise genotyping is necessary to understand epidemiology and clinical manifestations of Chlamydia trachomatis infection with different genotypes. Next-generation high-throughput sequencing (NGHTS) has opened new frontiers in microbial genotyping, but has been clinically characterized in only a few settings. This study aimed to determine C. trachomatis genotypes in particular mixed-genotype infections and their association with clinical manifestations and to characterize the sensitivity and accuracy of NGHTS. Cervical specimens were collected from 8,087 subjects from physical examination center (PEC), assisted reproductive technology center (ART) and gynecology clinics (GC) of Chenzhou Hospital of China. The overall prevalence of C. trachomatis was 3.8% (311/8087) whereas a prevalence of 2.8, 3.7 and 4.8% was found in PEC, ART and GC, respectively. The most frequent three C. trachomatis genotypes were E (27.4%, 83/303), F (21.5%, 65/303) and J (18.2%, 55/303). Moreover, NGHTS identified 20 (6.6%, 20/303) mixed-genotype infections of C. trachomatis. Genotype G was more often observed in the subjects with pelvic inflammatory disease than genotype E (adjusted OR = 3.61, 95%CI, 1.02-12.8, p = 0.046). Mixed-genotype infection was associated with severe vaginal cleanliness (degree IV) with an adjusted OR of 5.17 (95%CI 1.03-25.9, p = 0.046) whereas mixed-genotype infection with large proportion of minor genotypes was associated with cervical squamous intraepithelial lesion (SIL) with an adjusted OR of 5.51 (95%CI 1.17-26.01, p = 0.031). Our results indicated that NGHTS is a feasible tool to identity C. trachomatis mixed-genotype infections, which may be associated with worse vaginal cleanliness and cervical SIL.

3.
Front Microbiol ; 13: 945133, 2022.
Article in English | MEDLINE | ID: mdl-35836420

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 variants is a new and unsolved threat; therefore, it is an urgent and unmet need to develop a simple and rapid method for detecting and tracking SARS-CoV-2 variants. The spike gene of SARS-CoV-2 was amplified by isothermal recombinase-aided amplification (RAA) followed by the cleavage of CRISPR-Cas12a in which five allele-specific crRNAs and two Omicron-specific crRNAs were designed to detect and distinguish major SARS-CoV-2 variants of concerns (VOCs), including alpha, beta, delta variants, and Omicron sublineages BA.1 and BA.2. The whole reaction can be carried out in one tube at 39°C within 1.5-2 h, and the results can be read out by a fluorescence meter or naked eyes. Our results show that the RAA/CRISPR-Cas12a-based assay could readily distinguish the signature mutations, i.e., K417N, T478K, E484K, N501Y, and D614G, with a sensitivity of 100.0% and a specificity of 94.9-100.0%, respectively. The assay had a low limit of detection (LOD) of 104 copies/reaction and a concordance of 92.59% with Sanger sequencing results when detecting 54 SARS-CoV-2 positive clinical samples. The two Omicron-specific crRNAs can readily and correctly distinguish Omicron BA.1 and BA.2 sublineages with a LOD of as low as 20 copies/reaction. Furthermore, no cross-reaction was observed for all crRNAs analyzed when detecting clinical samples infected with 11 common respiratory pathogens. The combination of isothermal amplification and CRISPR-Cas12a-mediated assay is suitable for rapid detection of major SARS-CoV-2 variants in point-of-care testing and in resource-limiting settings. This simple assay could be quickly updated for emerging variants and implemented to routinely monitor and track the spread of SARS-CoV-2 variants.

4.
Front Immunol ; 13: 844023, 2022.
Article in English | MEDLINE | ID: mdl-35432309

ABSTRACT

We aimed to analyze HIV-1 seroreversion caused by combination antiretroviral therapy (cART) and to explore antibody levels of anti-HIV-1 as an alternative biomarker of HIV-1 reservoir. We searched PubMed, Embase, the Cochrane Library, and Web of Science up to August 2021 for publications about the performance of HIV-1 serological assays or the association between antibody responses against HIV-1 and HIV-1 reservoirs. Potential sources of heterogeneity were explored by meta-regression analysis, including the year of publication, country, pretreatment viral load, sample size, the timing of treatment, time on cART, and principle or type of serological assay. Twenty-eight eligible studies with a total population of 1,883 were included in the meta-analysis. The pooled frequency of HIV-1 seronegativity is 38.0% (95% CI: 28.0%-49.0%) among children with vertical HIV-1 infection and cART initiation at the age of less than 6 months, while the percentage of HIV-1 seronegativity declined to 1.0% (95% CI: 0%-3.0%) when cART was initiated at the age of >6 months. For adult patients, 16.0% (95% CI: 9.0%-24.0%) of them were serologically negative when cART was initiated at acute/early infection of HIV-1, but the seronegative reaction was rarely detected when cART was started at chronic HIV-1 infection. Substantial heterogeneity was observed among the studies to estimate the frequency of HIV-1 seronegativity in the early-cART population (I2 ≥ 70%, p < 0.05 and all), while mild heterogeneity existed for the deferred-cART subjects. Moreover, anti-HIV-1 antibody response positively correlates with HIV-1 reservoir size with a pooled rho of 0.43 (95% CI: 0.28-0.55), suggesting that anti-HIV antibody level may be a feasible biomarker of HIV-1 reservoir size.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Adult , Antiretroviral Therapy, Highly Active , Child , HIV Infections/drug therapy , HIV Seropositivity/drug therapy , Humans , Infant , Viral Load
5.
ACS Synth Biol ; 11(5): 1811-1823, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35481381

ABSTRACT

Objectives: Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants pose a great threat and burden to global public health. Here, we evaluated a clustered regularly interspaced short palindromic repeat-associated enzyme 12a (CRISPR-Cas12a)-based method for detecting major SARS-CoV-2 variants of concern (VOCs) in SARS-CoV-2 positive clinical samples. Methods: Allele-specific CRISPR RNAs (crRNAs) targeting the signature mutations in the spike protein of SARS-CoV-2 are designed. A total of 59 SARS-CoV-2 positive oropharyngeal swab specimens were used to evaluate the performance of the CRISPR-Cas12a-mediated assay to identify major SARS-CoV-2 VOCs. Results: Compared with Sanger sequencing, the eight allele-specific crRNAs analyzed can specifically identify the corresponding mutations with a positive predictive value of 83.3-100% and a negative predictive value of 85.7-100%. Our CRISPR-Cas12a-mediated assay distinguished wild-type and four major VOCs (Alpha, Beta, Delta, and Omicron) of SARS-CoV-2 with a sensitivity of 93.8-100.0% and a specificity of 100.0%. The two methods showed a concordance of 98.3% (58/59) with a κ value of 0.956-1.000, while seven (11.9%) samples were found to be positive for extra mutations by the CRISPR-based assay. Furthermore, neither virus titers nor the sequences adjacent to the signature mutations were associated with the variation of fluorescence intensity detected or the false-positive reaction observed when testing clinical samples. In addition, there was no cross-reaction observed when detecting 33 SARS-CoV-2 negative clinical samples infected with common respiratory pathogens. Conclusions: The CRISPR-Cas12a-based genotyping assay is highly sensitive and specific when detecting both the SARS-CoV-2 wild-type strain and major VOCs. It is a simple and rapid assay that can monitor and track the circulating SARS-CoV-2 variants and the dynamics of the coronavirus disease 2019 (COVID-19) pandemic and can be easily implemented in resource-limited settings.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , CRISPR-Cas Systems/genetics , Humans , Mutation , SARS-CoV-2/genetics
6.
Biosens Bioelectron ; 205: 114098, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35189535

ABSTRACT

BACKGROUND: The newly emerged SARS-CoV-2 variant of concern (VOC) Omicron is spreading quickly worldwide, which manifests an urgent need of simple and rapid assay to detect and diagnose Omicron infection and track its spread. METHODS: To design allele-specific CRISPR RNAs (crRNAs) targeting the signature mutations in the spike protein of Omicron variant, and to develop a CRISPR-Cas12a-based assay to specifically detect Omicron variant. RESULTS: Our system showed a low limit of detection of 2 copies per reaction for the plasmid DNA of Omicron variant, and could readily detect Omicron variant in 5 laboratory-confirmed clinical samples and distinguish them from 57 SARS-CoV-2 positive clinical samples (4 virus isolates and 53 oropharyngeal swab specimens) infected with wild-type (N = 8) and the variants of Alpha (N = 17), Beta (N = 17) and Delta (N = 15). The testing results could be measured by fluorescent detector or judged by naked eyes. In addition, no cross-reaction was observed when detecting 16 clinical samples infected with 9 common respiratory pathogens. CONCLUSIONS: The rapid assay could be easily set up in laboratories already conducting SARS-CoV-2 nucleic acid amplification tests and implemented routinely in resource-limited settings to monitor and track the spread of Omicron variant.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19/diagnosis , CRISPR-Cas Systems/genetics , Humans , SARS-CoV-2/genetics
7.
Microbiol Spectr ; 9(3): e0101721, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34787487

ABSTRACT

A big challenge for the control of COVID-19 pandemic is the emergence of variants of concern (VOCs) or variants of interest (VOIs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may be more transmissible and/or more virulent and could escape immunity obtained through infection or vaccination. A simple and rapid test for SARS-CoV-2 variants is an unmet need and is of great public health importance. In this study, we designed and analytically validated a CRISPR-Cas12a system for direct detection of SARS-CoV-2 VOCs. We further evaluated the combination of ordinary reverse transcription-PCR (RT-PCR) and CRISPR-Cas12a to improve the detection sensitivity and developed a universal system by introducing a protospacer adjacent motif (PAM) near the target mutation sites through PCR primer design to detect mutations without PAM. Our results indicated that the CRISPR-Cas12a assay could readily detect the signature spike protein mutations (K417N/T, L452R/Q, T478K, E484K/Q, N501Y, and D614G) to distinguish alpha, beta, gamma, delta, kappa, lambda, and epsilon variants of SARS-CoV-2. In addition, the open reading frame 8 (ORF8) mutations (T/C substitution at nt28144 and the corresponding change of amino acid L/S) could differentiate L and S lineages of SARS-CoV-2. The low limit of detection could reach 10 copies/reaction. Our assay successfully distinguished 4 SARS-CoV-2 strains of wild type and alpha (B.1.1.7), beta (B.1.351), and delta (B.1.617.2) variants. By testing 32 SARS-CoV-2-positive clinical samples infected with the wild type (n = 5) and alpha (n = 11), beta (n = 8), and delta variants (n = 8), the concordance between our assay and sequencing was 100%. The CRISPR-based approach is rapid and robust and can be adapted for screening the emerging mutations and immediately implemented in laboratories already performing nucleic acid amplification tests or in resource-limited settings. IMPORTANCE We described CRISPR-Cas12-based multiplex allele-specific assay for rapid SARS-CoV-2 variant genotyping. The new system has the potential to be quickly developed, continuously updated, and easily implemented for screening of SARS-CoV-2 variants in resource-limited settings. This approach can be adapted for emerging mutations and implemented in laboratories already conducting SARS-CoV-2 nucleic acid amplification tests using existing resources and extracted nucleic acid.


Subject(s)
COVID-19 Testing/methods , COVID-19/virology , CRISPR-Cas Systems , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Alleles , COVID-19/diagnosis , Databases, Nucleic Acid , Humans , Mass Screening , Mutation , Polymerase Chain Reaction , Public Health , Spike Glycoprotein, Coronavirus/genetics
8.
Front Microbiol ; 12: 729016, 2021.
Article in English | MEDLINE | ID: mdl-34650533

ABSTRACT

A longitudinal serological study to investigate the seropositive frequency, incidence, and antibody dynamics of Chlamydia trachomatis infection in the general population of China is urgently needed in order to optimize the strategies for surveillance and precise prevention of C. trachomatis infection. This longitudinal study enrolled 744 subjects aged 18-65 years from Jidong Community of Northern China from 2014 to 2018. Seropositive frequency, incidence, and reinfection of C. trachomatis were determined by detecting antibody against C. trachomatis Pgp3 using "in-house" luciferase immunosorbent assay (LISA). The dynamic of anti-Pgp3 antibody was analyzed using the Generalized Estimating Equation (GEE) model. The overall Pgp3 seropositive frequency among the 18-65-year-old population was 28.1% (95% CI 24.9-31.5), and significantly increased from 12.0% in those aged 18-29 years to 48.6% in the 60-65 years old. The seropositive frequency was slightly higher in women than in men (31.3% vs. 25.4%) without statistical significance. The C. trachomatis incidence and reinfection rate were 11 and 14 per 1,000 person-years, respectively, and showed no significant difference with respect to age, gender, ethnicity, marital status, and education levels. Furthermore, anti-Pgp3 antibody remained detectable in 93.3% (195/209) of the seropositive subjects during the 5 years of follow-up. The overall decay rate for anti-Pgp3 antibody for CT-infected persons was -0.123 Log2 RLU/year, which was dramatically slower than in CT new infection (-3.34 Log2 RLU/year) or reinfection (-1.1 Log2 RLU/year). In conclusion, at least one quarter of the people aged 18-65 years have been infected with C. trachomatis over their lifetime while all age groups are susceptible to C. trachomatis infection in the community of Northern China. Therefore, comprehensive prevention strategies are urgently needed.

9.
Virus Res ; 303: 198505, 2021 10 02.
Article in English | MEDLINE | ID: mdl-34271038

ABSTRACT

Human immunodeficiency virus type one (HIV-1) infection is one of the major public health problems worldwide. Effective control of HIV-1 epidemic relies on early diagnosis of HIV-1 infection by using simple, rapid point-of-care test (POCT). An integrated assay was developed and evaluated in this study to combine a real-time isothermal reverse-transcription recombinase-aided amplification (rRT-RAA) and CRISPR Cas12a-mediated detection for HIV-1. The testing results could be directly observed with naked eye using a blue light imager, making it a suitable on-site testing assay. Our preliminary data indicated that the assay was capable of detecting 20 copies of purified HIV-1 DNA or RNA per reaction or as low as 123 copies/ml of HIV-1 viral load in clinical samples. When screening 155 clinical samples with or without HIV-1 infection, the sensitivity and specificity of the rRT-RAA assay were 98.95% (94/95) and 100% (60/60), respectively. The coefficient value was 0.986 when compared with the Chinese FDA approved HIV-1 RT-qPCR assay. Furthermore, the newly developed HIV-1 rRT-RAA assay could detect the major HIV-1 genotypes CRF01_AE, CRF07_BC, CRF08_BC, CRF08_BC and subtype B in China. Our preliminary results indicated that the rRT-RAA assay or its combination with CRISPR Cas12a-mediated detection could serve as a rapid, convenient, and robust assay for HIV-1 detection.


Subject(s)
HIV Infections , HIV-1 , CRISPR-Cas Systems , HIV Infections/diagnosis , HIV Infections/genetics , HIV-1/genetics , HIV-1/metabolism , Humans , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems , Point-of-Care Testing , Recombinases/metabolism , Sensitivity and Specificity
10.
Int J Pharm ; 601: 120537, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33781883

ABSTRACT

Herein, we reported a new bergenin: 4-aminobenzamide (BGN-4AM) cocrystal with significantly enhanced solubility and low hygroscopicity probed from two aspects such as phase solubility diagrams and theoretical calculations. Compared with anhydrous BGN, BGN-4AM solubilities in water and different buffer solutions (pH = 1.2, 4.5, 6.8) increase significantly. It is noted that BGN-4AM solubility in pH = 6.8 buffer solution presents 32.7 times higher than anhydrous BGN. Interestingly, BGN-4AM (0.31 ± 0.07%) showcases lower hygroscopicity than anhydrous BGN (9.31 ± 0.16%). The predicted and experimental solubilities agree with each other when considering solubility product (Ksp) and solution binding constant (K11) in phase solubility diagrams, indicating the solution complexes formation occurs. Further crystal surface-water interactions and Bravais, Friedel, Donnay-Harker (BFDH) analyses based on Density Functional Theory with dispersion correction (DFT-d) methods support the enhanced solubility. The water probe demonstrates an average interaction energy of -6.48 kcal/mol on the 002 plane of BGN-4AM, and only -5.47 kcal/mol on the 011 plane of BGN monohydrate. The lower lattice energy of BGN-4AM guarantees its lower hygroscopicity than BGN monohydrate. BGN-4AM with enhanced solubility and low hygroscopicity can be a potential candidate for further formulation development.


Subject(s)
Solubility , Benzamides , Benzopyrans , Crystallization , Wettability , para-Aminobenzoates
11.
Reprod Toxicol ; 76: 63-70, 2018 03.
Article in English | MEDLINE | ID: mdl-29294364

ABSTRACT

Some large population-based cohort studies highlighted the risk of maternal smoking during pregnancy (MSDP) for children attention-deficit/hyperactivity disorder (ADHD). However, the causality of this association is still controversial. Here we performed a meta-analysis trying to clarify the association between prenatal exposure to MSDP and ADHD in offspring. After publication screening, 27 eligible original articles with a total of 3076173 subjects were included. The results showed that either prenatal exposure to MSDP or smoking cessation during first trimester was significantly associated with childhood ADHD after adjusting for parental psychiatric history and social socioeconomic status. Smoking cessation before pregnancy, which was not significantly associated with childhood ADHD, was strongly recommended for female smokers planning to conceive. Inconsistent results were obtained in the meta-analysis on the risk of maternal passive smoking during pregnancy caused by paternal smoking. We also found that risk of MSDP for childhood ADHD varied across geographic regions.


Subject(s)
Attention Deficit Disorder with Hyperactivity/etiology , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/etiology , Smoking/adverse effects , Tobacco Smoke Pollution/adverse effects , Attention Deficit Disorder with Hyperactivity/epidemiology , Child , Female , Humans , Maternal Exposure/statistics & numerical data , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/psychology , Risk Factors , Smoking/epidemiology , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...