Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(15): 19121-19128, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37027524

ABSTRACT

The assorted utilization of infrared detectors induces the demand for more comprehensive and high-performance electronic devices that work at room temperature. The intricacy of the fabrication process with bulk material limits the exploration in this field. However, two-dimensional (2D) materials with a narrow band gap opening aid in infrared (IR) detection relatively, but the photodetection range is narrowed due to the inherent band gap. In this study, we report an unprecedented attempt at the coordinated use of both 2D heterostructure (InSe/WSe2) and the dielectric polymer (poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE)) for both visible and IR photodetection in a single device. The remnant polarization due to the ferroelectric effect of the polymer dielectric enhances the photocarrier separation in the visible range, resulting in high photoresponsivity. On the other hand, the pyroelectric effect of the polymer dielectric causes a change in the device current due to the increased temperature induced by the localized heating effect of the IR irradiation, which results in the change of ferroelectric polarization and induces the redistribution of charge carriers. In turn, it changes the built-in electric field, the depletion width, and the band alignment across the p-n heterojunction interface. Consequently, the charge carrier separation and the photosensitivity are therefore enhanced. Through the coupling between pyroelectricity and built-in electric field across the heterojunction, the specific detectivity for the photon energy below the band gap of the constituent 2D materials can reach up to 1011 Jones, which is better than all reported pyroelectric IR detectors. The proposed approach combining the ferroelectric and pyroelectric effects of the dielectric as well as exceptional properties of the 2D heterostructures can spark the design of advanced and not-yet realized optoelectronic devices.

2.
ACS Nano ; 15(5): 8686-8693, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33970616

ABSTRACT

Multistate logic is recognized as a promising approach to increase the device density of microelectronics, but current approaches are offset by limited performance and large circuit complexity. We here demonstrate a route toward increased integration density that is enabled by a mechanically tunable device concept. Bi-anti-ambipolar transistors (bi-AATs) exhibit two distinct peaks in their transconductance and can be realized by a single 2D-material heterojunction-based solid-state device. Dynamic deformation of the device reveals the co-occurrence of two conduction pathways to be the origin of this previously unobserved behavior. Initially, carrier conduction proceeds through the junction edge, but illumination and application of strain can increase the recombination rate in the junction sufficiently to support an alternative carrier conduction path through the junction area. Optical characterization reveals a tunable emission pattern and increased optoelectronic responsivity that corroborates our model. Strain control permits the optimization of the conduction efficiency through both pathways and can be employed in quaternary inverters for future multilogic applications.

3.
Small ; 16(45): e2003944, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33079462

ABSTRACT

Nanoscrolls are a class of nanostructures where atomic layers of 2D materials are stacked consecutively in a coaxial manner to form a 1D spiral topography. Self-assembly of chemical vapor deposition grown 2D WS2 monolayer into quasi-1D van der Waals scroll structure instigates a plethora of unique physiochemical properties significantly different from its 2D counterparts. The physical properties of such nanoscrolls can be greatly manipulated upon hybridizing them with high-quantum-yield colloidal quantum dots, forming 0D/2D structures. The efficient dissociation of excitons at the heterojunctions of QD/2D hybridized nanoscrolls exhibits a 3000-fold increased photosensitivity compared to the pristine 2D-material-based nanoscroll. The synergistic effects of confined geometry and efficient QD scatterers produce a nanocavity with multiple feedback loops, resulting in coherent lasing action with an unprecedentedly low lasing threshold. Predominant localization of the excitons along the circumference of this helical scroll results in a 12-fold brighter emission for the parallel-polarized transition compared to the perpendicular one, as confirmed by finite-difference time-domain simulation. The versatility of hybridized nanoscrolls and their unique properties opens up a powerful route for not-yet-realized devices toward practical applications.

4.
ACS Appl Mater Interfaces ; 12(43): 49122-49129, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33058666

ABSTRACT

With the superiority of laser-level intensity, narrow spectral line width, and broad-angular emission, random lasers (RLs) have drawn considerable research interests for their potential to carry out a variety of applications. In this work, the applications associated with optical-encoded technologies, including security printing, military friend or foe identification (FFI), and anticounterfeiting of documents are highlighted, and the concept of a transient RL "smart ink" has been proposed. The proof-of-concept was demonstrated as invisible signatures, which encoded the messages through the spectral difference of spontaneous emission and RL under specified conditions. Next, the possibility of encoding the data with multibit signals was further confirmed by exploiting the threshold tunability of RLs. Moreover, the transient characteristic of this smart ink and its capability to be attached on freeform surfaces of different materials were also shown. With the advantages of a facile manufacturing process and multiple purposes, it is expected that this ink can soon be carried out in a variety of practical utilities.

5.
Opt Express ; 28(9): 13542-13552, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403826

ABSTRACT

Optical memories are vitally important for the future development of high speed and low cost information technologies. Current optical memory devices still suffer from difficulties such as scaling-down of size, short-life expectancy, and non-volatility without the control of a gate electrode. To resolve these obstacles, a robust photoelectronic memory device is designed and demonstrated based on the integration of amorphous InGaZnO (a-IGZO), GNSs, and nitride multiple-quantum-wells light-emitting diode (MQWs LED). Utilizing the inherent nature of the band alignment between a-IGZO and graphene nanosheets (GNSs), electrons can transfer from a-IGZO to GNSs causing a persistent photoconductivity (PPC). With the long-lasting lifetime of PPC, the signal can be written optically and the encoded signal can be read both electrically and optically. The read and write processes reveal little current degradation for more than 10,000 sec, even repeated for more than hundred times. The device can convert invisible information to visible signal, and the encoded information can be simply erased under a reversed bias without a gate electrode. In addition, the memory device possesses a simple vertically stacked structure for 3D integration, and it is compatible with established technologies.

6.
ACS Appl Mater Interfaces ; 12(23): 26213-26221, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32400164

ABSTRACT

Tuning the optical and electrical properties by stacking different layers of two-dimensional (2D) materials enables us to create unusual physical phenomena. Here, we demonstrate an alternative approach to enhance charge separation and alter physical properties in van der Waals heterojunctions with type-II band alignment by using thin dielectric spacers. To illustrate our working principle, we implement a hexagonal boron nitride (h-BN) sieve layer in between an InSe/GeS heterojunction. The optical transitions at the junctions studied by photoluminescence and the ultrafast pump-probe technique show quenching of emission without h-BN layers exhibiting an indirect recombination process. This quenching effect due to strong interlayer coupling was confirmed with Raman spectroscopic studies. In contrast, h-BN layers in between InSe and GeS show strong enhancement in emission, giving another degree of freedom to tune the heterojunction property. The two-terminal photoresponse study supports the argument by showing a large photocurrent density for an InSe/h-BN/GeS device by avoiding interlayer charge recombination. The enhanced charge separation with h-BN mediation manifests a photoresponsivity and detectivity of 9 × 102 A W-1 and 3.4 × 1014 Jones, respectively. Moreover, a photogain of 1.7 × 103 shows a high detection of electrons for the incident photons. Interestingly, the photovoltaic short-circuit current is switched from positive to negative, whereas the open-circuit voltage changes from negative to positive. Our proposed enhancement of charge separation with 2D-insulator mediation, therefore, provides a useful route to manipulate the physical properties of heterostructures and for the future development of high-performance optoelectronic devices.

7.
ACS Appl Mater Interfaces ; 11(27): 24269-24278, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31250634

ABSTRACT

Two-dimensional ternary materials are attracting widespread interest because of the additional degree of freedom available to tailor the material property for a specific application. An In1-xSnxSe phototransistor possessing tunable ultrahigh mobility by Sn-doping engineering is demonstrated in this study. A striking feature of In1-xSnxSe flakes is the reduction in the oxide phase compared to undoped InSe, which is validated by spectroscopic analyses. Moreover, first-principles density functional calculations performed for the In1-xSnxSe crystal system reveal the same effective mass when doped with Sn atoms. Hence, because of an increased lifetime owing to the enhanced crystal quality, the carriers in In1-xSnxSe have higher mobility than in InSe. The internally boosted electrical properties of In1-xSnxSe exhibit ultrahigh mobility of 2560 ± 240 cm2 V-1 s-1 by suppressing the interfacial traps with substrate modification and channel encapsulation. As a phototransistor, the ultrathin In1-xSnxSe flakes are highly sensitive with a detectivity of 1014 Jones. It possesses a large photoresponsivity and photogain (Vg = 40 V) as high as 3 × 105 A W-1 and 0.5 × 106, respectively. The obtained results outperform all previously reported performances of InSe-based devices. Thus, the doping-engineered In1-xSnxSe-layered semiconductor finds a potential application in optoelectronics and meets the demand for faster electronic technology.

8.
Sci Rep ; 8(1): 2720, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426912

ABSTRACT

Random laser with intrinsically uncomplicated fabrication processes, high spectral radiance, angle-free emission, and conformal onto freeform surfaces is in principle ideal for a variety of applications, ranging from lighting to identification systems. In this work, a white random laser (White-RL) with high-purity and high-stability is designed, fabricated, and demonstrated via the cost-effective materials (e.g., organic laser dyes) and simple methods (e.g., all-solution process and self-assembled structures). Notably, the wavelength, linewidth, and intensity of White-RL are nearly isotropic, nevertheless hard to be achieved in any conventional laser systems. Dynamically fine-tuning colour over a broad visible range is also feasible by on-chip integration of three free-standing monochromatic laser films with selective pumping scheme and appropriate colour balance. With these schematics, White-RL shows great potential and high application values in high-brightness illumination, full-field imaging, full-colour displays, visible-colour communications, and medical biosensing.

9.
ACS Nano ; 11(8): 7600-7607, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28651049

ABSTRACT

An integrated random laser based on green materials with dissolubility and recyclability is created and demonstrated. The dissolvable and recyclable random laser (DRRL) can be dissolved in water, accompanying the decay of emission intensity and the increment in lasing threshold. Furthermore, the DRRL can be reused after the process of deionized treatment, exhibiting excellent reproducibility with several recycling processes.

10.
Nanoscale Res Lett ; 6(1): 503, 2011 Aug 22.
Article in English | MEDLINE | ID: mdl-21859482

ABSTRACT

Optical integration is essential for practical application, but it remains unexplored for nanoscale devices. A newly designed nanocomposite based on ZnO semiconductor nanowires and Tb(OH)3/SiO2 core/shell nanospheres has been synthesized and studied. The unique sea urchin-type morphology, bright and sharply visible emission bands of lanthanide, and large aspect ratio of ZnO crystalline nanotips make this novel composite an excellent signal receiver, waveguide, and emitter. The multifunctional composite of ZnO nanotips and Tb(OH)3/SiO2 nanoparticles therefore can serve as an integrated nanophotonics hub. Moreover, the composite of ZnO nanotips deposited on a Tb(OH)3/SiO2 photonic crystal can act as a directional light fountain, in which the confined radiation from Tb ions inside the photonic crystal can be well guided and escape through the ZnO nanotips. Therefore, the output emission arising from Tb ions is truly directional, and its intensity can be greatly enhanced. With highly enhanced lasing emissions in ZnO-Tb(OH)3/SiO2 as well as SnO2-Tb(OH)3/SiO2 nanocomposites, we demonstrate that our approach is extremely beneficial for the creation of low threshold and high-power nanolaser.

11.
Opt Express ; 17(6): 4342-7, 2009 Mar 16.
Article in English | MEDLINE | ID: mdl-19293860

ABSTRACT

A new composite consisting of ZnO nanorods decorated with Ag(2)O nanoparticles has been synthesized and characterized. It is found that the band gap emission of ZnO nanorods can be greatly enhanced by about 10 times, while the defect emission can be suppressed to the detection limit, simultaneously. The ratio between the band gap and defect emission reaches to an enhanced factor of about 600 times. The underlying mechanism is attributed to the combined effects of surface modification, band alignment, as well as charge transfer. Our approach provided here can be extended to many other semiconductors for creating nanocomposites with novel optical properties.

12.
J Nanosci Nanotechnol ; 8(12): 6344-8, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19205204

ABSTRACT

A new and general approach based on vapor-phase transport technique using Au-coated plant cell walls has been developed to synthesize patterned ZnO nanostructures. Nanowires, nanodendrites and nanotowers were fabricated by adsorption of different metallic ions on plant cell walls. It is shown that plant cell wall can serve as a well-defined template to grow patterned nanostructures. Using transmission electron microscope and Raman spectroscopy, the structural characteristic of the nanostructures were investigated, exhibiting good crystallinity and hexagonal symmetry of the nanomaterials. Quite interestingly, the shape of the nanostructures can be controlled by the metallic ions adsorbed on plant cell walls. Without metallic ions, a homogeneous distribution of nanowires was obtained. On the other hand, with Ni+2 or Fe+3 ions, nanodendrites and nanotowers were observed, respectively. Our approach provides a low cost method that opens up new possibilities for the growth of patterned nanomaterials with desired shapes.


Subject(s)
Cell Wall/chemistry , Cell Wall/ultrastructure , Nanostructures/chemistry , Nanostructures/ultrastructure , Zinc Oxide/chemistry , Adsorption , Euphorbiaceae/chemistry , Euphorbiaceae/ultrastructure , Gold , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning , Nanotechnology , Nanowires/chemistry , Nanowires/ultrastructure , Spectrum Analysis, Raman
13.
Opt Lett ; 31(21): 3173-5, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17041672

ABSTRACT

ZnO/SnO nanocomposites have been designed to enhance the band edge emission and suppress the defect emission of ZnO nanorods simultaneously. It is found that the intensity ratio between the band edge and defect emission can be improved by up to 4 orders of magnitude. The underlying mechanism is interpreted in terms of surface modification as well as carrier transfer from SnO nanoparticles to ZnO nanorods. Our approach is very useful for creating highly efficient optoelectronic devices.

14.
Ann N Y Acad Sci ; 1042: 163-7, 2005 May.
Article in English | MEDLINE | ID: mdl-15965059

ABSTRACT

The goal of this study is to examine whether there is a difference in the regulation of Ca2+ between mitochondria near the cell surface and mitochondria in the cytosol. Total internal reflection fluorescence and epifluorescence microscopy were used to monitor changes in the mitochondrial Ca2+ ([Ca2+]mt) between the mitochondria near the plasma membrane and those in the cytosol. The results show that [Ca2+]mt near the plasma membrane increased earlier and decayed slower after high K+ stimulation than average mitochondria in the cytosol. In addition, the changes in [Ca2+]mt in the mitochondria near the cell surface after a second stimulation were larger than those induced by the first stimulation. The results provide direct evidence to support the hypothesis that mitochondria in different subcellular localization show differential responses to the influx of extracellular Ca2+.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Mitochondria/metabolism , Animals , Cell Shape , Microscopy, Fluorescence , PC12 Cells , Rats
15.
Nanomedicine ; 1(4): 286-92, 2005 Dec.
Article in English | MEDLINE | ID: mdl-17292101

ABSTRACT

Mitochondria are now known to function physiologically not only in the production of ATP as the major cellular energy source, but also in the regulation of intracellular signaling, in, for example, stress-induced apoptosis and buffering of cytosolic calcium. It should be noted, when interpreting mitochondrial studies in situ, that mitochondria within cells show heterogeneity in both function and location. We applied both conventional epifluorescence microscopy (EPIFM) and total-internal-reflection fluorescence microscopy (TIRFM) in this study. Image data taken from TIRFM are excellent and markedly different from those taken from EPIFM. We further investigated the physiological variations of mitochondrial functions using an EPIFM/TIRFM dual-imaging system. This system permits further analysis of functions of mitochondria and other organelles with more precision than is possible using a traditional platform.


Subject(s)
Calcium/metabolism , Image Enhancement/methods , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Microscopy, Video/methods , Mitochondria/physiology , Mitochondria/ultrastructure , Animals , PC12 Cells , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...