Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(2)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31936032

ABSTRACT

Sports robots have become a popular research topic in recent years. For table-tennis robots, ball tracking and trajectory prediction are the most important technologies. Several methods were developed in previous research efforts, and they can be divided into two categories: physical models and machine learning. The former use algorithms that consider gravity, air resistance, the Magnus effect, and elastic collision. However, estimating these external forces require high sampling frequencies that can only be achieved with high-efficiency imaging equipment. This study thus employed machine learning to learn the flight trajectories of ping-pong balls, which consist of two parabolic trajectories: one beginning at the serving point and ending at the landing point on the table, and the other beginning at the landing point and ending at the striking point of the robot. We established two artificial neural networks to learn these two trajectories. We conducted a simulation experiment using 200 real-world trajectories as training data. The mean errors of the proposed dual-network method and a single-network model were 39.6 mm and 42.9 mm, respectively. The results indicate that the prediction performance of the proposed dual-network method is better than that of the single-network approach. We also used the physical model to generate 330 trajectories for training and the simulation test results show that the trained model achieved a success rate of 97% out of 30 attempts, which was higher than the success rate of 70% obtained by the physical model. A physical experiment presented a mean error and standard deviation of 36.6 mm and 18.8 mm, respectively. The results also show that even without the time stamps, the proposed method maintains its prediction performance with the additional advantages of 15% fewer parameters in the overall network and 54% shorter training time.

2.
Rev Sci Instrum ; 88(5): 055107, 2017 May.
Article in English | MEDLINE | ID: mdl-28571409

ABSTRACT

To operate a redundant manipulator to accomplish the end-effector trajectory planning and simultaneously control its gesture in online programming, incorporating the human motion is a useful and flexible option. This paper focuses on a manipulative instrument that can simultaneously control its arm gesture and end-effector trajectory via human teleoperation. The instrument can be classified by two parts; first, for the human motion capture and data processing, marker systems are proposed to capture human gesture. Second, the manipulator kinematics control is implemented by an augmented multi-tasking method, and forward and backward reaching inverse kinematics, respectively. Especially, the local-solution and divergence problems of a multi-tasking method are resolved by the proposed augmented multi-tasking method. Computer simulations and experiments with a 7-DOF (degree of freedom) redundant manipulator were used to validate the proposed method. Comparison among the single-tasking, original multi-tasking, and augmented multi-tasking algorithms were performed and the result showed that the proposed augmented method had a good end-effector position accuracy and the most similar gesture to the human gesture. Additionally, the experimental results showed that the proposed instrument was realized online.


Subject(s)
Algorithms , Computer Simulation , Gestures , Biomechanical Phenomena , Humans , Robotics
3.
Sensors (Basel) ; 14(4): 6012-31, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24681669

ABSTRACT

The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.


Subject(s)
Industry , Robotics/education , Analysis of Variance , Humans , Male , Time Factors , Young Adult
4.
Rev Sci Instrum ; 84(11): 114301, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24289412

ABSTRACT

A gait measurement system is a useful tool for rehabilitation applications. Such a system is used to conduct gait experiments in large workplaces such as laboratories where gait measurement equipment can be permanently installed. However, a gait measurement system should be portable if it is to be used in clinics or community centers for aged people. In a portable gait measurement system, the workspace is limited and landmarks on a subject may not be visible to the cameras during experiments. Thus, we propose a virtual-marker function to obtain positions of unseen landmarks for maintaining data consistency. This work develops a portable clinical gait measurement system consisting of lightweight motion capture devices, force plates, and a walkway assembled from plywood boards. We evaluated the portable clinic gait system with 11 normal subjects in three consecutive days in a limited experimental space. Results of gait analysis based on the verification of within-day and between-day coefficients of multiple correlations show that the proposed portable gait system is reliable.


Subject(s)
Gait , Rehabilitation/instrumentation , Humans , Organ Specificity , Quality Control , Software , User-Computer Interface
5.
Sensors (Basel) ; 13(7): 8412-30, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23820745

ABSTRACT

Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.


Subject(s)
Algorithms , Energy Transfer , Feedback , Models, Theoretical , Robotics/instrumentation , Robotics/methods , Computer Simulation , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...