Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(3): 103448, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237325

ABSTRACT

Currently, glycerol is the most effective cryoprotectant when combined with straw packaging for preserving chicken sperm. Glycerol, however, has toxic effects on sperm cells, which can reduce fertility when present in inseminated semen. Historically, the serial dilution (SD) method was developed to eliminate glycerol and mitigate its adverse effects. We have recently developed a new method for removing glycerol called sucrose-Percoll (SP), that can be performed at either 4°C (4°C-SP) or 20°C (20°C-SP). This SP protocol has been found to be simpler and faster to improve fertility compared to the traditional SD method. Nevertheless, the reasons for such effectiveness differences between glycerol removal procedures remained unclear and required more comprehensive understandings for future protocol developments. Here, we examined the effects of SP and SD protocols on the fertility duration. We also investigated the potential causes of varying effects of these methods by analyzing sperm quality parameters and sperm storage in the hen's reproductive tract. The fertility was significantly higher in 4°C-SP than 20°C-SP during the first 6 d after insemination, and also higher than sperm processed using SD. No difference was observed between 20°C-SP and SD between 7 and 13 d. However, a 2.7-time higher fertility was shown with 4°C-SP. In addition, the SP method demonstrated a 2-fold greater ability to remove glycerol than the SD method. Sperm centrifuged at 4°C-SP exhibited higher sperm storage compared to 20°C-SP and were higher than sperm treated with SD. Overall, our findings revealed that the differences in efficiencies between SP and SD methods were not related to in vitro sperm quality but resulted from a higher ability to remove glycerol, a higher storage capacity in the female reproductive tract, and a longer fertility ability. Since no impacts were observed in sperm cellular characteristics, further experiments are necessary to investigate the influences of glycerol removal treatments at the molecular level.


Subject(s)
Chickens , Glycerol , Female , Male , Animals , Glycerol/pharmacology , Semen , Spermatozoa , Cryopreservation/veterinary , Colloids
2.
Anim Reprod Sci ; 258: 107330, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37734123

ABSTRACT

Glycerol is a cryoprotectant used widely for the cryopreservation of animal sperm, but it is linked to a decrease in fertility. The mechanism underlying the negative effects of glycerol remains unclear. Therefore, in this study, we aimed to gain a better understanding by using the chicken model. First, we investigated the impact of increasing the concentration of glycerol during insemination on hen fertility. Our findings revealed that 2% glycerol resulted in partial infertility, while 6% glycerol led to complete infertility. Subsequently, we examined the ability of sperm to colonize sperm storage tubules (SST) during in vivo insemination and in vitro incubation. The sperm used in the experiment were stained with Hoechst and contained 0, 2, or 6% glycerol. Furthermore, we conducted perivitelline membrane lysis tests and investigated sperm motility, mitochondrial function, ATP concentration, membrane integrity, and apoptosis after 60 min of incubation with different glycerol concentrations (0%, 1%, 2%, 6%, and 11%) at two temperatures to simulate pre-freezing (4 °C) and post-insemination (41 °C) conditions. Whereas 2% glycerol significantly reduced 50% of sperm containing SST, 6% glycerol completely inhibited SST colonization in vivo. On the other hand, in vitro incubation of sperm with SST revealed no effect of 2% glycerol, and 6% glycerol showed only a 17% reduction in sperm-filled SST. Moreover, glycerol reduced sperm-egg penetration rates and also affected sperm motility, bioenergetic metabolism, and cell death at 4 °C. These effects were observed when the concentration of glycerol exceeded 6%. Furthermore, at 41 °C, glycerol caused even greater damage, particularly in terms of reducing sperm motility. These data altogether reveal important effects of glycerol on sperm biology, sperm migration, SST colonization, and oocyte penetration. This suggests that glycerol plays a role in reducing fertility and presents opportunities for improving sperm cryopreservation.


Subject(s)
Infertility , Semen Preservation , Male , Animals , Female , Glycerol/pharmacology , Chickens/physiology , Sperm Motility , Semen Preservation/veterinary , Semen Preservation/methods , Semen , Cryoprotective Agents/pharmacology , Cryoprotective Agents/metabolism , Spermatozoa/physiology , Cryopreservation/veterinary , Cryopreservation/methods , Infertility/veterinary
3.
Cryobiology ; 112: 104567, 2023 09.
Article in English | MEDLINE | ID: mdl-37586473

ABSTRACT

A concentration of 11% of glycerol is the standard one for sperm cryopreservation in chickens, however, the presence of just 2% glycerol already causes severe fertility reduction, suggesting the necessity of removing glycerol before artificial insemination (AI). The major approach developed for this purpose is serial dilution followed by centrifugation (SDC), which demands special equipment (such as a refrigerate room) to maintain post-thaw semen at 4 °C, besides being time consuming. Therefore, we attempted to develop a simple method to remove glycerol from chicken frozen-thawed semen based on a colloidal gel, Percoll, which is ordinarily used to select motile and viable sperm in mammals as well as in fresh chicken semen. In this study, we used a Percoll based glycerol removal solution (GRS) containing sucrose to avoid frozen-thawed sperm suffering from osmotic stress. Subsequently, several conditions including GRS compositions (GRS A, B, C and D) and centrifugation temperatures (4 and 20 °C) were compared by their influence on sperm in vitro parameters. Afterwards, GRS A and D were selected for fertility evaluation, compared to conventional SDC method. Our results showed that the fertility with GRS A at both 4 and 20 °C were higher than GRS D (p < 0.05) and similar or even superior to the fertility obtained with SDC method. Altogether, our novel GRS protocol is a valuable method for chicken sperm cryobanking policy, supported by its notable results of fertility as well as saving 44% of time, with a simple equipment at flexible operation temperatures of 4 or 20 °C.


Subject(s)
Glycerol , Semen Preservation , Male , Animals , Glycerol/pharmacology , Semen , Cryopreservation/methods , Chickens , Cryoprotective Agents/pharmacology , Sperm Motility , Spermatozoa , Semen Preservation/veterinary , Semen Preservation/methods , Fertility , Mammals
4.
Reproduction ; 161(5): 489-498, 2021 05.
Article in English | MEDLINE | ID: mdl-33635824

ABSTRACT

Male subfertility causes are very varied and sometimes related to post-gonadic maturation disruption, involving seminal plasma constituents. Among them, extracellular vesicles are involved in key exchanges with sperm in mammals. However, in birds, the existence of seminal extracellular vesicles is still debated. The aim of the present work was first to clarify the putative presence of extracellular vesicles in the seminal plasma of chickens, secondly to characterize their size and protein markers in animals showing different fertility, and finally to make preliminary evaluations of their interactions with sperm. We successfully isolated extracellular vesicles from seminal plasma of males showing the highest differences in semen quality and fertility by using ultracentrifugation protocol (pool of 3 ejaculates/rooster, n =3/condition). Size characterization performed by electron microscopy revealed a high proportion of small extracellular vesicles (probably exosomes) in chicken seminal plasma. Smaller extracellular vesicles appeared more abundant in fertile than in subfertile roosters, with a mean diameter of 65.12 and 77.18 nm, respectively. Different protein markers of extracellular vesicles were found by western blotting (n = 6/condition). Among them, HSP90A was significantly more abundant in fertile than in subfertile males. In co-incubation experiments (n = 3/condition), extracellular vesicles enriched seminal fractions of fertile males showed a higher capacity to be incorporated into fertile than into subfertile sperm. Sperm viability and motility were impacted by the presence of extracellular vesicles from fertile males. In conclusion, we successfully demonstrated the presence of extracellular vesicles in chicken seminal plasma, with differential size, protein markers and putative incorporation capacity according to male fertility status.


Subject(s)
Extracellular Vesicles/transplantation , Infertility, Male/therapy , Semen/metabolism , Seminal Plasma Proteins/metabolism , Seminal Vesicles/metabolism , Spermatozoa/metabolism , Animals , Chickens , Extracellular Vesicles/metabolism , Infertility, Male/metabolism , Infertility, Male/pathology , Male , Semen Analysis/veterinary
5.
Animals (Basel) ; 10(12)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291566

ABSTRACT

A tetrazolium salt, 2-[2-methoxy-4-nitrophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H-tetrazolium (WST-8), has been used widely to determine cell viability; however, its application in the field of reproduction is still limited due to this assay merely providing information regarding cell viability. The aim of this study was to correlate the WST-8 reduction rate with various sperm quality-related parameters (i.e., sperm viability, motility, progressive motility, acrosome integrity and mitochondria integrity) in order to provide a rapid, reliable and affordable assessment for boar semen quality evaluation. Using different ratios of active/damaged sperm cells, we first validated our sample preparations by standard flow cytometry and computer-assisted sperm analysis. Further analyses demonstrated that the most efficient experimental condition for obtaining a reliable prediction model was when sperm concentration reached 300 × 106 cells/mL with the semen/cell-counting kit-8 (CCK-8®) ratio of 200/10 and incubated time of 20 min. Under this set up, the WST-8 reduction rate (differences on optic density reading value, ΔOD at 450 nm) and sperm parameters were highly correlated (p < 0.01) for all sperm parameters evaluated. In the case of limited semen samples, a minimal semen concentration at 150 × 106 cells/mL with the semen/CCK-8® ratio of 200/20 and incubation time for 30 min could still provide reliable prediction of sperm parameters using the WST-8 assay. Our data provide strong evidence for the first time that the WST-8 assay could be used to evaluate boar semen quality with great potential to be applied to different mammalian species.

6.
Animals (Basel) ; 10(10)2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33036420

ABSTRACT

Semen collection can be achieved via hand penile massage or rectal stimulation using electro-ejaculation methods. Traditional electro-ejaculation procedure applied relatively high voltage of 3-15 volts with a maximum current of 900 mA. However, these manipulations often result in great stress and discomforts in animals. In this study, we showed low-voltage electro-ejaculation procedure using 2-3 volts with a maximum current of 500 mA can efficiently stimulated ejaculations in zoo captive lanyu miniature pigs with a high success rate of 81.3% (13/16). Besides normal semen properties (semen volume, pH, sperm concentration), we demonstrated that low-voltage electro-ejaculation caused less stress in the animals, and sperm cells obtained via low-voltage electro-ejaculation exhibit low abnormality (10.3%), high viability (84.3%), motility (75.7%), progressive motility (63.7%), and acrosome integrity (88%). However, cryopreservation protocol used in the current study requires further optimization, as sperm mitochondrial function was partially compromised during freezing procedures. Taken together, we demonstrated in this study that a low-voltage electro-ejaculation approach can be used to obtain quality sperm cells from zoo captive lanyu miniature pig with less physical stress during electro-ejaculation procedure.

7.
Theriogenology ; 86(6): 1427-1435, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27264740

ABSTRACT

Transgenic animals are important in vivo models for biological research. However, low transgenic rates are commonly reported in the literature. Lentiviral transgenesis is a promising method that has greater efficiency with regard to generating transgenic animals, although the transgenic rate of this approach is highly dependent on different transgenes and concentrated lentiviruses. In this study, we modified a method to concentrate lentiviruses using a table centrifuge, commonly available in most laboratories, and carried out analysis of the transgenic efficiency in mice. Based on 26 individual constructs and 627 live pups, we found that the overall transgenic rate was more than 30%, which is higher than obtained with pronuclear microinjection. In addition, we did not find any significant differences in transgenic efficiency when the size of inserts was less than 5000 bp. These results not only show that our modified method can successfully generate transgenic mice but also suggest that this approach could be generally applied to different constructs when the size of inserts is less than 5000 bp. It is anticipated that the results of this study can help encourage the wider laboratory use of lentiviral transgenesis in mice.


Subject(s)
Gene Transfer Techniques/veterinary , Genetic Vectors , Lentivirus/genetics , Mice, Transgenic , Animals , Centrifugation , Mice , Transgenes/genetics
8.
Springerplus ; 4: 597, 2015.
Article in English | MEDLINE | ID: mdl-26543732

ABSTRACT

Ineffective therapeutic treatments and inadequate repair ability in the central nervous system are disturbing problems for several neurological diseases. Fortunately, the development of clinically applicable populations of stem cells has provided an avenue to overcome the failure of endogenous repair systems and substitute new cells into the damaged brain. However, there are still several existing obstacles to translating into clinical application. Here we review the stem-cell based therapies for Parkinson's disease and discuss the potential advantages and drawbacks. We hope this review may provide suggestions for viable strategies to overcome the current technical and biological issues associated with the application of stem cells in Parkinson's disease.

9.
PLoS One ; 10(9): e0137637, 2015.
Article in English | MEDLINE | ID: mdl-26376480

ABSTRACT

High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington's disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered "ABC transporters", "RIG-I-like receptor signaling pathway", immune system", "adaptive immune system","tissue remodeling and wound repair" and "cytoskeleton remodeling". In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases.


Subject(s)
Computational Biology/methods , Corpus Striatum/metabolism , Gene Expression Regulation , Huntington Disease/genetics , MicroRNAs/genetics , Neuroblastoma/genetics , Animals , Biomarkers/metabolism , Corpus Striatum/cytology , Disease Models, Animal , Gene Expression Profiling , Huntington Disease/metabolism , Huntington Disease/pathology , Mice , Mice, Transgenic , Neurites/metabolism , Neuroblastoma/pathology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...