Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299345

ABSTRACT

Reconstruction of the periodontal ligament (PDL) to fulfill functional requirement remains a challenge. This study sought to develop a biomimetic microfibrous system capable of withstanding the functional load to assist PDL regeneration. Collagen-based straight and waveform microfibers to guide PDL cell growth were prepared using an extrusion-based bioprinter, and a laminar flow-based bioreactor was used to generate fluidic shear stress. PDL cells were seeded on the respective microfibers with 0 or 6 dynes/cm2 fluidic shear stress for 1-4 h. The viability, morphology, adhesion pattern, and gene expression levels of PDL cells were assessed. The results revealed that upon bioprinting optimization, collagen-based microfibers were successfully fabricated. The straight microfibers were 189.9 ± 11.44 µm wide and the waveform microfibers were 235.9 ± 11.22 µm wide. Under 6 dynes/cm2 shear stress, PDL cells were successfully seeded, and cytoskeleton expansion, adhesion, and viability were greater. Cyclin D, E-cadherin, and periostin were upregulated on the waveform microfibers. In conclusion, 3D-printed collagen-based waveform microfibers preserved PDL cell viability and exhibited an enhanced tendency to promote healing and regeneration under shear stress. This approach is promising for the development of a guiding scaffold for PDL regeneration.


Subject(s)
Collagen/pharmacology , Osteogenesis/drug effects , Periodontal Ligament/drug effects , Tissue Scaffolds/chemistry , Bioprinting/methods , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cytoskeleton/drug effects , Humans , Printing, Three-Dimensional , Stress, Mechanical
2.
Int J Biol Macromol ; 158: 627-635, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32387616

ABSTRACT

This study aimed to evaluated the potential of core-shell poly(D,l-lactide-co-glycolide)-chitosan (PLGA-chitosan) nanospheres encapsulating simvastatin (SIM) and doxycycline (DOX) for promoting periodontal and large-sized osseous defects. SIM, and/or DOX were encapsulated in PLGA-chitosan nanospheres using double emulsion technique and were delivered to sites of experimental periodontitis and large-sized mandibular osseous defects of rats for 1-4 weeks. The resultant nanospheres were ~ 200 nm diameter with distinct core-shell structure and released SIM and DOX sustainably for 28 days. DOX and SIM-DOX nanospheres significantly inhibited P. gingivalis and S. sanguinis. In experimental periodontitis sites, SIM-DOX nanospheres significantly down-regulated IL-1b and MMP-8 and significantly reduced bone loss. In mandibular osseous defects, VEGF was up-regulated, and osteogenesis was significantly augmented with SIM nanospheres treatment. In conclusion, core-shell PLGA-chitosan nanospheres released SIM and DOX sustainably. SIM-DOX and SIM nanospheres could be considered to promote the repair of infected periodontal sites and non-infected osseous defects respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...