Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
ACS Nano ; 17(6): 5373-5386, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36897286

ABSTRACT

The recently emerged metal-halide hybrid perovskite (MHP) possesses superb optoelectronic features, which have obtained great attention in solid-state lighting, photodetection, and photovoltaic applications. Because of its excellent external quantum efficiency, MHP has promising potential for the manifestation of ultralow threshold optically pumped laser. However, the demonstration of an electrically driven laser remains a challenge because of the vulnerable degradation of perovskite, limited exciton binding energy (Eb), intensity quenching, and efficiency drop by nonradiative recombinations. In this work, based on the paradigm of integration of Fabry-Perot (F-P) oscillation and resonance energy transfer, we observed an ultralow-threshold (∼250 µWcm-2) optically pumped random laser from moisture-insensitive mixed dimensional quasi-2D Ruddlesden-Popper phase perovskite microplates. Particularly, we demonstrated an electrically driven multimode laser with a threshold of ∼60 mAcm-2 from quasi-2D RPP by judicious combination of a perovskite/hole transport layer (HTL) and an electron transport layer (ETL) having suitable band alignment and thickness. Additionally, we showed the tunability of lasing modes and color by driving an external electric potential. Performing finite difference time domain (FDTD) simulations, we confirmed the presence of F-P feedback resonance, the light trapping effect at perovskite/ETL, and resonance energy transfer contributing to laser action. Our discovery of an electrically driven laser from MHP opens a useful avenue for developing future optoelectronics.

2.
Behav Sci (Basel) ; 13(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36661615

ABSTRACT

The 12-Year Basic Education Curricula not only follow the objectives of previous curriculum syllabus development, but they place more focus on competence-oriented instruction, which aims to emphasize the importance of combining the curriculum with life situations that are not solely based on learning knowledge and skills. This study aims to investigate the results of the students' learning effectiveness and learning engagement after adding competence-oriented instructional strategies into electrical engineering practical subjects offered by the Department of Electrical Engineering in skills-based senior high schools, and, at the same time, to figure out the difference in learning effectiveness using different instructional strategies. Two classes of students from the Department of Electrical Engineering major in electrical engineering practical subjects in one skills-based senior high school in Central Taiwan were chosen as the participants for this study. By way of pre-test-post-test research design and heterogeneous grouping, a 10-week instruction experiment consisting of two groups and occurring over the course of 30 classes was conducted, wherein competence-oriented instructional strategies were used in an experimental group, while traditional didactic instructional strategies were used in a control group. By analyzing the collection of quantitative and qualitative data through competence-oriented instructional strategies, the instruction effectiveness and feasibility of the basic electricity practical curriculum were developed as the study topic for understanding how competence-oriented instruction can be implemented into the practical curriculum of the electrical engineering and electronic engineering group. According to the research objective, the results were concluded as follows: (1) Students of the Department of Electrical Engineering have a slightly better learning effectiveness in electrical engineering practice under competence-oriented instructional strategies compared with those who learned under the traditional didactic instructional strategies; (2) there is a significant difference in the students' learning engagement in electrical engineering practice from the Department of Electrical Engineering under competence-oriented instructional strategies compared with those who learned under the traditional didactic instructional strategies. The conclusion of this study emphasizes designing questions based on life situations, thereby applying what students have learned to solve problems they encounter in their daily lives. Compared with traditional didactic instructional strategies, competence-oriented instructional strategies not only have a better learning effectiveness and provide flexibility for the students to solve problems and provide analysis for situations, they also have broader applicability and an increased number of positive benefits when it comes to students' group interactions and sharing.

3.
ACS Nano ; 16(4): 5743-5751, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35377604

ABSTRACT

The clean production of hydrogen from water using sunlight has emerged as a sustainable alternative toward large-scale energy generation and storage. However, designing photoactive semiconductors that are suitable for both light harvesting and water splitting is a pivotal challenge. Atomically thin transition metal dichalcogenides (TMD) are considered as promising photocatalysts because of their wide range of available electronic properties and compositional variability. However, trade-offs between carrier transport efficiency, light absorption, and electrochemical reactivity have limited their prospects. We here combine two approaches that synergistically enhance the efficiency of photocarrier generation and electrocatalytic efficiency of two-dimensional (2D) TMDs. The arrangement of monolayer WS2 and MoS2 into a heterojunction and subsequent nanostructuring into a nanoscroll (NS) yields significant modifications of fundamental properties from its constituents. Spectroscopic characterization and ab initio simulation demonstrate the beneficial effects of straining and wall interactions on the band structure of such a heterojunction-NS that enhance the electrochemical reaction rate by an order of magnitude compared to planar heterojunctions. Phototrapping in this NS further increases the light-matter interaction and yields superior photocatalytic performance compared to previously reported 2D material catalysts and is comparable to noble-metal catalyst systems in the photoelectrochemical hydrogen evolution reaction (PEC-HER) process. Our approach highlights the potential of morphologically varied TMD-based catalysts for PEC-HER.

4.
ACS Appl Mater Interfaces ; 13(41): 49224-49231, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34609827

ABSTRACT

Hyperbolic metamaterials (HMMs) have attracted significant attention due to the profound manipulation of the photonic density of states, resulting in the efficient optoelectronic devices with the enhanced light-matter interaction. HMMs are conventionally built on rigid large-size substrates with poor conformability and the absence of flexibility. Here, we demonstrate a grating collageable HMM (GCHMM), which is composed of eight alternating layers of Au and poly(methyl methacrylate) (PMMA) and PMMA grating nanostructure containing quantum dots (QDs). The QDs serve as a scattering gain medium performing a random laser action, and the grating nanostructure enhances the extraction of light from QDs. The GCHMM enhances laser action by 13 times, reduces lasing threshold by 46%, and increases differential quantum efficiency by 1.8 times as compared to a planar collageable HMM. In addition, the GCHMM can be retransferred multiple times to other substrates as well as provide sufficient protection in water and still retain an excellent performance. It also shows stable functionality even when transferred to a dental floss. The GCHMM, therefore, promises to become a versatile platform for foldable, adaptable, free-standing, and water-resistant optoelectronic device applications.

5.
Small ; 16(45): e2003944, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33079462

ABSTRACT

Nanoscrolls are a class of nanostructures where atomic layers of 2D materials are stacked consecutively in a coaxial manner to form a 1D spiral topography. Self-assembly of chemical vapor deposition grown 2D WS2 monolayer into quasi-1D van der Waals scroll structure instigates a plethora of unique physiochemical properties significantly different from its 2D counterparts. The physical properties of such nanoscrolls can be greatly manipulated upon hybridizing them with high-quantum-yield colloidal quantum dots, forming 0D/2D structures. The efficient dissociation of excitons at the heterojunctions of QD/2D hybridized nanoscrolls exhibits a 3000-fold increased photosensitivity compared to the pristine 2D-material-based nanoscroll. The synergistic effects of confined geometry and efficient QD scatterers produce a nanocavity with multiple feedback loops, resulting in coherent lasing action with an unprecedentedly low lasing threshold. Predominant localization of the excitons along the circumference of this helical scroll results in a 12-fold brighter emission for the parallel-polarized transition compared to the perpendicular one, as confirmed by finite-difference time-domain simulation. The versatility of hybridized nanoscrolls and their unique properties opens up a powerful route for not-yet-realized devices toward practical applications.

6.
ACS Omega ; 5(30): 18551-18556, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32775855

ABSTRACT

Total internal reflection is one of the most important phenomena when a propagated wave strikes a medium boundary, which possesses a wide range of applications spanning from optical communication to a fluorescence microscope. It has also been widely used to demonstrate conventional laser actions with resonant cavities. Recently, cavity-free stimulated emission of radiation has attracted great attention in disordered media because of several exciting physical phenomena, ranging from Anderson localization of light to speckle-free imaging. However, unlike conventional laser systems, the total internal reflection has never been implemented in the study of laser actions derived from randomly distributed media. Herein, we demonstrate an ultra-low threshold cavity-free laser system using air bubbles as scattering centers in which the total internal reflection from the surface of air bubbles can greatly reduce the leakage of the scattered beam energy and then enhance light amplification within a coherent closed loop. Our approach provides an excellent alternative for the manipulation of optical energy flow to achieve ultra-low threshold cavity-free laser systems, which should be very useful for the development of high performance optoelectronic devices.

7.
Nanoscale ; 12(35): 18269-18277, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32857093

ABSTRACT

Three-dimensional organic-inorganic hybrid halide perovskites have been demonstrated as great materials for applications in optoelectronics and photonics. However, their inherent instabilities in the presence of moisture, light, and heat may hinder their commercialization. Alternatively, emerging two-dimensional (2D) organic-inorganic hybrid perovskites have recently attracted increasing attention owing to their great environmental stability and inherent natural quantum-well structure. In this work, we have synthesized a high-quality long-chain organic diammonium spacer assisted 2D hybrid perovskite FA-(N-MPDA)PbBr4 (FA = formamidinium and N-MPDA = N-methylpropane-1,3-diammonium) by the slow evaporation at constant temperature method. The millimeter-sized single-crystalline microrods demonstrate low threshold random lasing behavior at room temperature. The single-crystalline 2D hybrid perovskite random laser achieved a very narrow linewidth (∼0.1 nm) with a low threshold (∼0.5 µJ cm-2) and a high quality factor (∼5350). Furthermore, the 2D hybrid microrod laser shows stable lasing emission with no measurable degradation after at least 2 h under continuous illumination, which substantially proves the stability of 2D perovskites. Our results demonstrate the promise of 2D organic-inorganic microrod-shaped perovskites and provide an important step toward the realization of high-performance optoelectronic devices.

8.
ACS Appl Mater Interfaces ; 12(32): 36485-36495, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32678568

ABSTRACT

Metal-organic frameworks (MOFs) are superior for multiple applications including drug delivery, sensing, and gas storage because of their tunable physiochemical properties and fascinating architectures. Optoelectronic application of MOFs is difficult because of their porous geometry and conductivity issues. Recently, a few optoelectronic devices have been fabricated by a suitable design of integrating MOFs with other materials. However, demonstration of laser action arising from MOFs as intrinsic gain media still remains challenging, even though some studies endeavor on encapsulating luminescence organic laser dyes into the porous skeleton of MOFs to achieve laser action. Unfortunately, the aggregation of such unstable laser dyes causes photoluminescence quenching and energy loss, which limits their practical application. In this research, unprecedently, we demonstrated ultralow-threshold (∼13 nJ/cm2) MOF laser action by a judicious choice of metal nodes and organic linkers during synthesis of MOFs. Importantly, we also demonstrated that the white random lasing from the beautiful microflowers of organic linkers possesses a porous network, which is utilized to synthesize the MOFs. The highly luminescent broad-band organic linker 1,4-NDC, which itself exhibits a strong white random laser, is used not only to achieve the stimulated emission in MOFs but also to reduce the lasing threshold. Such white lasing has multiple applications from bioimaging to the recently developed versatile Li-Fi technology. In addition, we showed that the smooth facets of MOF microcrystals can show Fabry-Perot resonant cavities having a high quality factor of ∼103 with excellent photostability. Our unique discovery of stable, nontoxic, high-performance MOF laser action will open up a new route for the development of new optoelectronic devices.

9.
ACS Appl Mater Interfaces ; 12(23): 26213-26221, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32400164

ABSTRACT

Tuning the optical and electrical properties by stacking different layers of two-dimensional (2D) materials enables us to create unusual physical phenomena. Here, we demonstrate an alternative approach to enhance charge separation and alter physical properties in van der Waals heterojunctions with type-II band alignment by using thin dielectric spacers. To illustrate our working principle, we implement a hexagonal boron nitride (h-BN) sieve layer in between an InSe/GeS heterojunction. The optical transitions at the junctions studied by photoluminescence and the ultrafast pump-probe technique show quenching of emission without h-BN layers exhibiting an indirect recombination process. This quenching effect due to strong interlayer coupling was confirmed with Raman spectroscopic studies. In contrast, h-BN layers in between InSe and GeS show strong enhancement in emission, giving another degree of freedom to tune the heterojunction property. The two-terminal photoresponse study supports the argument by showing a large photocurrent density for an InSe/h-BN/GeS device by avoiding interlayer charge recombination. The enhanced charge separation with h-BN mediation manifests a photoresponsivity and detectivity of 9 × 102 A W-1 and 3.4 × 1014 Jones, respectively. Moreover, a photogain of 1.7 × 103 shows a high detection of electrons for the incident photons. Interestingly, the photovoltaic short-circuit current is switched from positive to negative, whereas the open-circuit voltage changes from negative to positive. Our proposed enhancement of charge separation with 2D-insulator mediation, therefore, provides a useful route to manipulate the physical properties of heterostructures and for the future development of high-performance optoelectronic devices.

10.
ACS Appl Mater Interfaces ; 12(17): 19840-19854, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32270675

ABSTRACT

Multifunctional lanthanide-doped upconversion nanoparticles (UCNPs) have spread their wings in the fields of flexible optoelectronics and biomedical applications. One of the ongoing challenges lies in achieving UCNP-based nanocomposites, which enable a continuous-wave (CW) laser action at ultralow thresholds. Here, gold sandwich UCNP nanocomposites [gold (Au1)-UCNP-gold (Au2)] capable of exhibiting lasing at ultralow thresholds under CW excitation are demonstrated. The metastable energy-level characteristics of lanthanides are advantageous for creating population inversion. In particular, localized surface plasmon resonance-based electromagnetic hotspots in the nanocomposites and the huge enhancement of scattering coefficient for the formation of coherent closed loops due to multiple scattering facilitate the process of stimulated emissions as confirmed by theoretical simulations. The nanocomposites are subjected to stretchable systems for enhancing the lasing action (threshold ∼ 0.06 kW cm-2) via a light-trapping effect. The applications in bioimaging of HeLa cells and antibacterial activity (photothermal therapy) are demonstrated using the newly designed Au1-UCNP-Au2 nanocomposites.


Subject(s)
Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/radiation effects , Dimethylpolysiloxanes/chemistry , Erbium/chemistry , Erbium/radiation effects , Escherichia coli/drug effects , Fluorides/chemistry , Fluorides/radiation effects , Gold/chemistry , Gold/radiation effects , Graphite/chemistry , HeLa Cells , Humans , Hyperthermia, Induced/methods , Lasers , Metal Nanoparticles/radiation effects , Microbial Sensitivity Tests , Nanocomposites/radiation effects , Staphylococcus aureus/drug effects , Surface Plasmon Resonance , Ytterbium/chemistry , Ytterbium/radiation effects , Yttrium/chemistry , Yttrium/radiation effects
11.
ACS Nano ; 13(11): 12540-12552, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31617700

ABSTRACT

Dual-functional devices that can simultaneously detect light and emit light have a tremendous appeal for multiple applications, including displays, sensors, defense, and high-speed optical communication. Despite the tremendous efforts of scientists, the progress of integration of a phototransistor, where the built-in electric field separates the photogenerated excitons, and a light-emitting diode, where the radiative recombination can be enhanced by band offset, into a single device remains a challenge. Combining the superior properties of perovskite quantum dots (PQDs) and graphene, here we report a light-emissive, ultrasensitive, ultrafast, and broadband vertical phototransistor that can simultaneously act as an efficient photodetector and light emitter within a single device. The estimated value of the external quantum efficiency of the vertical phototransistor is ∼1.2 × 1010% with a photoresponsivity of >109 A W-1 and a response time of <50 µs, which exceed all the presently reported vertical phototransistor devices. We also demonstrate that the modulation of the Dirac point of graphene efficiently tunes both amplitude and polarity of the photocurrent. The device exhibits a green emission having a quantum efficiency of 5.6%. The moisture-insensitive and environmentally stable, light-emissive, ultrafast, and ultrasensitive broadband phototransistor creates a useful route for dual-functional optoelectronic devices.

12.
ACS Appl Mater Interfaces ; 11(29): 26518-26527, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31283174

ABSTRACT

Two-dimensional (2D) material nanocomposites have emerged as a material system for discovering new physical phenomena and developing novel devices. However, because of the low density of states of most two-dimensional materials such as graphene, the heterostructure of nanocomposites suffers from an enhanced depletion region, which can greatly reduce the efficiency of the charge carrier transfer and deteriorate the device performance. To circumvent this difficulty, here we propose an alternative approach by inserting a second 2D mediator with a heavy effective mass having a large density of states in-between the heterojunction of 2D nanocomposites. The mediator can effectively reduce the depletion region and form a type-II band alignment, which can speed up the dissociation of electron-hole pairs and enhance charge carrier transfer. To illustrate the principle, we demonstrate a novel stretchable photodetector based on the combination of graphene/ReS2/perovskite quantum dots. Two-dimensional ReS2 acts as a mediator in-between highly absorbing perovskite quantum dots and a high-mobility graphene channel and a thiol-based linker between the ReS2 and the perovskite. It is found that the optical sensitivity can be enhanced by 22 times. This enhancement was ascribed to the improvement of the charge transfer efficiency as evidenced by optical spectroscopy measurements. The produced photosensors are capable of reaching the highest reported value of photoresponsivity (>107 A W-1) and detectivity compared to previously studied stretchable devices. Mechanical robustness with tolerable strain up to 100% and excellent stability make our device ideal for future wearable electronics.

13.
ACS Appl Mater Interfaces ; 11(27): 24269-24278, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31250634

ABSTRACT

Two-dimensional ternary materials are attracting widespread interest because of the additional degree of freedom available to tailor the material property for a specific application. An In1-xSnxSe phototransistor possessing tunable ultrahigh mobility by Sn-doping engineering is demonstrated in this study. A striking feature of In1-xSnxSe flakes is the reduction in the oxide phase compared to undoped InSe, which is validated by spectroscopic analyses. Moreover, first-principles density functional calculations performed for the In1-xSnxSe crystal system reveal the same effective mass when doped with Sn atoms. Hence, because of an increased lifetime owing to the enhanced crystal quality, the carriers in In1-xSnxSe have higher mobility than in InSe. The internally boosted electrical properties of In1-xSnxSe exhibit ultrahigh mobility of 2560 ± 240 cm2 V-1 s-1 by suppressing the interfacial traps with substrate modification and channel encapsulation. As a phototransistor, the ultrathin In1-xSnxSe flakes are highly sensitive with a detectivity of 1014 Jones. It possesses a large photoresponsivity and photogain (Vg = 40 V) as high as 3 × 105 A W-1 and 0.5 × 106, respectively. The obtained results outperform all previously reported performances of InSe-based devices. Thus, the doping-engineered In1-xSnxSe-layered semiconductor finds a potential application in optoelectronics and meets the demand for faster electronic technology.

14.
ACS Appl Mater Interfaces ; 11(1): 1163-1173, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30543414

ABSTRACT

Plasmonic material has emerged with multifunctionalities for its remarkable tailoring light emission, reshaping density of states (DOS), and focusing subwavelength light. However, restricted by its propagation loss and narrowband resonance in nature, it is a challenge for plasmonic material to provide a broadband DOS to advance its application. Here, we develop a novel nanoscale core-shell hyperbolic structure that possesses a remarkable coupling effect inside the multishell nanoscale composite owing to a higher DOS and a longer time of collective oscillations of the electrons than the plasmonic-based pure-metal nanoparticles. Subsequently, a giant localized electromagnetic wave of surface plasmon resonance is formed at the surface, causing pronounced out-coupling effect. Specifically, the nanoscale core-shell hyperbolic structure confines the energy well without being decayed, reducing the propagation loss and then achieving an unprecedented stimulated emission (random lasing action by dye molecule) with a record ultralow threshold (∼30 µJ/cm2). Besides, owing to the radial symmetry of the nanoscale core-shell hyperbolic structure, the excitation of high wavevector modes and induced additional DOS are easily accessible. We believe that the nanoscale core-shell hyperbolic structure paves a way to enlarge the development of plasmonic-based applications, such as high optoelectronic conversion efficiency of solar cells, great power extraction of light-emitting diodes, wide spectra photodetectors, carrying the emitter inside the core part as quantitative fluorescence microscopy and bioluminescence imaging system for in vivo and in vitro research on human body.

15.
ACS Nano ; 12(12): 11847-11859, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30352157

ABSTRACT

Production of multicolor or multiple wavelength lasers over the full visible-color spectrum from a single chip device has widespread applications, such as superbright solid-state lighting, color laser displays, light-based version of Wi-Fi (Li-Fi), and bioimaging, etc. However, designing such lasing devices remains a challenging issue owing to the material requirements for producing multicolor emissions and sophisticated design for producing laser action. Here we demonstrate a simple design and highly efficient single segment white random laser based on solution-processed NaYF4:Yb/Er/Tm@NaYF4:Eu core-shell nanoparticles assisted by Au/MoO3 multilayer hyperbolic meta-materials. The multicolor lasing emitted from core-shell nanoparticles covering the red, green, and blue, simultaneously, can be greatly enhanced by the high photonic density of states with a suitable design of hyperbolic meta-materials, which enables decreasing the energy consumption of photon propagation. As a result, the energy upconversion emission is enhanced by ∼50 times with a drastic reduction of the lasing threshold. The multiple scatterings arising from the inherent nature of the disordered nanoparticle matrix provide a convenient way for the formation of closed feedback loops, which is beneficial for the coherent laser action. The experimental results were supported by the electromagnetic simulations derived from the finite-difference time-domain (FDTD) method. The approach shown here can greatly simplify the design of laser structures with color-tunable emissions, which can be extended to many other material systems. Together with the characteristics of angle free laser action, our device provides a promising solution toward the realization of many laser-based practical applications.

16.
ACS Nano ; 12(9): 9596-9607, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30199626

ABSTRACT

Visible blind near-infrared (NIR) photodetection is essential when it comes to weapons used by military personnel, narrow band detectors used in space navigation systems, medicine, and research studies. The technological field of filterless visible blind, NIR omnidirectional photodetection and wearability is at a preliminary stage. Here, we present a filterless and lightweight design for a visible blind and wearable NIR photodetector capable of harvesting light omnidirectionally. The filterless NIR photodetector comprises the integration of distinct features of lanthanide-doped upconversion nanoparticles (UCNPs), graphene, and micropyramidal poly(dimethylsiloxane) (PDMS) film. The lanthanide-doped UCNPs are designed such that the maximum narrow band detection of NIR is easily accomplished by the photodetector even in the presence of visible light sources. Especially, the 4f n electronic configuration of lanthanide dopant ions provides for a multilevel hierarchical energy system that provides for longer lifetime of the excited states for photogenerated charge carriers to transfer to the graphene layer. The graphene layer can serve as an outstanding conduction path for photogenerated charge carrier transfer from UCNPs, and the flexible micropyramidal PDMS substrate provides an excellent platform for omnidirectional NIR light detection. Owing to these advantages, a photoresponsivity of ∼800 AW-1 is achieved by the NIR photodetector, which is higher than the values ever reported by UCNPs-based photodetectors. In addition, the photodetector is stretchable, durable, and transparent, making it suitable for next-generation wearable optoelectronic devices.

17.
Nanoscale ; 10(39): 18642-18650, 2018 Oct 21.
Article in English | MEDLINE | ID: mdl-30260359

ABSTRACT

Flexible optoelectronic devices facilitated by the piezotronic effect have important applications in the near future in many different fields ranging from solid-state lighting to biomedicine. Two-dimensional materials possessing extraordinary mechanical strength and semiconducting properties are essential for realizing nanopiezotronics and piezo-phototronics. Here, we report the first demonstration of piezo-phototronic properties in In1-xSnxSe flexible devices by applying systematic mechanical strain under photoexcitation. Interestingly, we discover that the dark current and photocurrent are increased by five times under a bending strain of 2.7% with a maximum photoresponsivity of 1037 AW-1. In addition, the device can act as a strain sensor with a strain sensitivity up to 206. Based on these values, the device outperforms the same class of devices in two-dimensional materials. The underlying mechanism responsible for the discovered behavior can be interpreted in terms of piezoelectric potential gating, allowing the device to perform like a phototransistor. The strain-induced gate voltage assists in the efficient separation of photogenerated charge carriers and enhances the mobility of In1-xSnxSe, resulting in good performance on a freeform surface. Thus, our multifunctional device is useful for the development of a variety of advanced applications and will help meet the demand of emerging technologies.

18.
Sci Rep ; 8(1): 9469, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29930247

ABSTRACT

Transient technology is deemed as a paramount breakthrough for its particular functionality that can be implemented at a specific time and then totally dissolved. Hyperbolic metamaterials (HMMs) with high wave-vector modes for negative refraction or with high photonic density of states to robustly enhance the quantum transformation efficiency represent one of the emerging key elements for generating not-yet realized optoelectronics devices. However, HMMs has not been explored for implementing in transient technology. Here we show the first attempt to integrate transient technology with HMMs, i.e., transient HMMs, composed of multilayers of water-soluble and bio-compatible polymer and metal. We demonstrate that our newly designed transient HMMs can also possess high-k modes and high photonic density of states, which enables to dramatically enhance the light emitter covered on top of HMMs. We show that these transient HMMs devices loss their functionalities after immersing into deionized water within 5 min. Moreover, when the transient HMMs are integrated with a flexible substrate, the device exhibits an excellent mechanical stability for more than 3000 bending cycles. We anticipate that the transient HMMs developed here can serve as a versatile platform to advance transient technology for a wide range of application, including solid state lighting, optical communication, and wearable optoelectronic devices, etc.

19.
ACS Appl Mater Interfaces ; 10(20): 17393-17400, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29706071

ABSTRACT

In recent years, flexible magnetoelectronics has attracted a great attention for its intriguing functionalities and potential applications, such as healthcare, memory, soft robots, navigation, and touchless human-machine interaction systems. Here, we provide the first attempt to demonstrate a new type of magneto-piezoresistance device, which possesses an ultrahigh sensitivity with several orders of resistance change under an external magnetic field (100 mT). In our device, Fe-Ni alloy powders are embedded in the silver nanowire-coated micropyramid polydimethylsiloxane films. Our devices can not only serve as an on/off switch but also act as a sensor that can detect different magnetic fields because of its ultrahigh sensitivity, which is very useful for the application in analog signal communication. Moreover, our devices contain several key features, including large-area and easy fabrication processes, fast response time, low working voltage, low power consumption, excellent flexibility, and admirable compatibility onto a freeform surface, which are the critical criteria for the future development of touchless human-machine interaction systems. On the basis of all of these unique characteristics, we have demonstrated a nontouch piano keyboard, instantaneous magnetic field visualization, and autonomous power system, making our new devices be integrable with magnetic field and enable to be implemented into our daily life applications with unfamiliar human senses. Our approach therefore paves a useful route for the development of wearable electronics and intelligent systems.

20.
Sci Rep ; 8(1): 2720, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426912

ABSTRACT

Random laser with intrinsically uncomplicated fabrication processes, high spectral radiance, angle-free emission, and conformal onto freeform surfaces is in principle ideal for a variety of applications, ranging from lighting to identification systems. In this work, a white random laser (White-RL) with high-purity and high-stability is designed, fabricated, and demonstrated via the cost-effective materials (e.g., organic laser dyes) and simple methods (e.g., all-solution process and self-assembled structures). Notably, the wavelength, linewidth, and intensity of White-RL are nearly isotropic, nevertheless hard to be achieved in any conventional laser systems. Dynamically fine-tuning colour over a broad visible range is also feasible by on-chip integration of three free-standing monochromatic laser films with selective pumping scheme and appropriate colour balance. With these schematics, White-RL shows great potential and high application values in high-brightness illumination, full-field imaging, full-colour displays, visible-colour communications, and medical biosensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...