Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(21): e2321410121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748575

ABSTRACT

Here, we describe a group of basal forebrain (BF) neurons expressing neuronal Per-Arnt-Sim (PAS) domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. Immunohistochemical staining in Npas1-cre-2A-TdTomato mice revealed BF Npas1+ neurons are distinct from well-studied parvalbumin or cholinergic neurons. Npas1 staining in GAD67-GFP knock-in mice confirmed that the vast majority of Npas1+ neurons are GABAergic, with minimal colocalization with glutamatergic neurons in vGlut1-cre-tdTomato or vGlut2-cre-tdTomato mice. The density of Npas1+ neurons was high, five to six times that of neighboring cholinergic, parvalbumin, or glutamatergic neurons. Anterograde tracing identified prominent projections of BF Npas1+ neurons to brain regions involved in sleep-wake control, motivated behaviors, and olfaction such as the lateral hypothalamus, lateral habenula, nucleus accumbens shell, ventral tegmental area, and olfactory bulb. Chemogenetic activation of BF Npas1+ neurons in the light period increased the amount of wakefulness and the latency to sleep for 2 to 3 h, due to an increase in long wake bouts and short NREM sleep bouts. NREM slow-wave and sigma power, as well as sleep spindle density, amplitude, and duration, were reduced, reminiscent of findings in several neuropsychiatric disorders. Together with previous findings implicating BF Npas1+ neurons in stress responsiveness, the anatomical projections of BF Npas1+ neurons and the effect of activating them suggest a possible role for BF Npas1+ neurons in motivationally driven wakefulness and stress-induced insomnia. Identification of this major subpopulation of BF GABAergic neurons will facilitate studies of their role in sleep disorders, dementia, and other neuropsychiatric conditions involving BF.


Subject(s)
Basal Forebrain , Basic Helix-Loop-Helix Transcription Factors , GABAergic Neurons , Wakefulness , Animals , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Basal Forebrain/metabolism , Basal Forebrain/physiology , Mice , Wakefulness/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice, Transgenic , Male , Sleep/physiology
2.
bioRxiv ; 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37986953

ABSTRACT

Here we describe a novel group of basal forebrain (BF) neurons expressing neuronal PAS domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. Immunohistochemical staining in Npas1-cre-2A-TdTomato mice revealed BF Npas1 + neurons are distinct from well-studied parvalbumin or cholinergic neurons. Npas1 staining in GAD67-GFP knock-in mice confirmed that the vast majority of Npas1 + neurons are GABAergic, with minimal colocalization with glutamatergic neurons in vGlut1-cre-tdTomato or vGlut2-cre-tdTomato mice. The density of Npas1 + neurons was high, 5-6 times that of neighboring cholinergic, parvalbumin or glutamatergic neurons. Anterograde tracing identified prominent projections of BF Npas1 + neurons to brain regions involved in sleep-wake control, motivated behaviors and olfaction such as the lateral hypothalamus, lateral habenula, nucleus accumbens shell, ventral tegmental area and olfactory bulb. Chemogenetic activation of BF Npas1 + neurons in the light (inactive) period increased the amount of wakefulness and the latency to sleep for 2-3 hr, due to an increase in long wake bouts and short NREM sleep bouts. Non-REM slow-wave (0-1.5 Hz) and sigma (9-15 Hz) power, as well as sleep spindle density, amplitude and duration, were reduced, reminiscent of findings in several neuropsychiatric disorders. Together with previous findings implicating BF Npas1 + neurons in stress responsiveness, the anatomical projections of BF Npas1 + neurons and the effect of activating them suggest a possible role for BF Npas1 + neurons in motivationally-driven wakefulness and stress-induced insomnia. Identification of this major subpopulation of BF GABAergic neurons will facilitate studies of their role in sleep disorders, dementia and other neuropsychiatric conditions involving BF. SIGNIFICANCE STATEMENT: We characterize a group of basal forebrain (BF) neurons in the mouse expressing neuronal PAS domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. BF Npas1 + neurons are a major subset of GABAergic neurons distinct and more numerous than cholinergic, parvalbumin or glutamate neurons. BF Npas1 + neurons target brain areas involved in arousal, motivation and olfaction. Activation of BF Npas1 + neurons in the light (inactive) period increased wakefulness and the latency to sleep due to increased long wake bouts. Non-REM sleep slow waves and spindles were reduced reminiscent of findings in several neuropsychiatric disorders. Identification of this major subpopulation of BF GABAergic wake-promoting neurons will allow studies of their role in insomnia, dementia and other conditions involving BF.

3.
Animals (Basel) ; 11(7)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34359172

ABSTRACT

The accelerated pace of research into Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) necessitates periodic summaries of current research. The present paper reviews virus susceptibilities in species with frequent human contact, and factors that are best predictors of virus susceptibility. Species reviewed were those in contact with humans through entertainment, pet, or agricultural trades, and for whom reports (either anecdotal or published) exist regarding the SARS-CoV-2 virus and/or the resulting disease state COVID-19. Available literature was searched using an artificial intelligence (AI)-assisted engine, as well as via common databases, such as Web of Science and Medline. The present review focuses on susceptibility and transmissibility of SARS-CoV-2, and polymorphisms in transmembrane protease serine 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2) that contribute to species differences. Dogs and pigs appear to have low susceptibility, while ferrets, mink, some hamster species, cats, and nonhuman primates (particularly Old World species) have high susceptibility. Precautions may therefore be warranted in interactions with such species, and more selectivity practiced when choosing appropriate species to serve as models for research.

SELECTION OF CITATIONS
SEARCH DETAIL
...