Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 381, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31942015

ABSTRACT

Qualitative and quantitative assessments of fluid cycling are essential to address the role and transport of deeply sourced fluids in subduction systems. In this study, sediment cores distributed across a submarine mud volcano (SMV) offshore southwestern Taiwan were investigated to determine the characteristics of fluids generated through the convergence between the Eurasian and Phillippine Sea Plates. The low dissolved chloride concentration combined with the enrichment of 18O, and depletion of 2H of pore fluids suggest the discharge of deep freshwater formed by smectite dehydration at an equilibrium temperature of 100 to 150 °C. The upward fluid velocities, decreasing from 2.0 to 5.0 cm yr-1 at the center to a negligible value at margin sites, varied with the rate and efficiency of anaerobic methanotrophy, demonstrating the impact of fluid migration on biogeochemical processes and carbon cycling. By extrapolating the velocity pattern, the flux of fluids exported from 13 SMVs into seawater amounted up to 1.3-2.5 × 107 kg yr-1, a quantity accounting for 1.1-28.6% of the smectite-bound water originally stored in the incoming sediments. Our results imply that SMVs could act as a conduit to channel the fluids produced from great depth/temperature into seafloor environments in a subduction system of the western Pacific Ocean.

2.
J Contam Hydrol ; 183: 72-81, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26529303

ABSTRACT

In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ(15)NNO3), carbon in dissolved inorganic carbon (δ(13)CDIC), and sulfur in sulfate (δ(34)SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ(13)CDIC (from -7.7‰ to -12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was -4.7‰), suggesting the contribution of C of trisodium citrate (δ(13)C=-12.4‰). No SO4(2-) and δ(34)SSO4 changes were observed. In the AD experiment, clear fractionation of δ(13)CDIC during DIC consumption (εC=-7.8‰) and δ(34)SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN=-12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field.


Subject(s)
Carbon/metabolism , Nitrogen Isotopes/metabolism , Nitrogen/metabolism , Pseudomonas/metabolism , Sulfur/metabolism , Thiobacillus/metabolism , Autotrophic Processes , Carbon/analysis , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Citrates/chemistry , Citrates/metabolism , Denitrification , Heterotrophic Processes , Iron/chemistry , Nitrates/metabolism , Nitrogen/analysis , Nitrogen Isotopes/analysis , Sodium Citrate , Sulfates/metabolism , Sulfides/chemistry , Sulfur/analysis , Sulfur Isotopes
3.
Water Res ; 47(8): 2661-75, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23499194

ABSTRACT

During early 2000, a new analytical procedure for nitrate isotopic measurement, termed the "denitrifier method", was established. With the development of the nitrate isotope tracer method, much research has been reported detailing sources of groundwater nitrate and denitrification mechanisms. However, a shortcoming of these tracer studies has been indicated owing to some overlapping of isotope compositions among different source materials and denitrification trends. In order to reduce these uncertainties, we examined nitrate isotope ratios within a frame of "regional groundwater flow dynamics" to eliminate unnecessary uncertainties in elucidating nitrate sources and behaviors. A total of 361 samples were collected from the Kumamoto area: the circulated groundwater system with a scale of 10(3) km(2) in southern Japan. Subsequently, the nitrate pollution was examined within the above-mentioned framework. As a result, a reasonable identification of the sources and attenuation behaviors (both denitrification and dilution) of groundwater nitrate pollution was obtained over the study area. This study demonstrates that the use of nitrate isotope tracers efficiently improves with a comprehensive understanding of groundwater flow dynamics. The approach emphasized in this study is important and should be applicable in other areas.


Subject(s)
Environmental Monitoring/methods , Groundwater/analysis , Natural Springs/analysis , Nitrates/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Chromatography, Ion Exchange , Denitrification , Fertilizers/analysis , Japan , Manure/analysis , Mass Spectrometry , Nitrates/chemistry , Nitrogen Isotopes/analysis , Nitrogen Isotopes/chemistry , Seasons , Sewage/analysis , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...