Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Seizure ; 111: 178-186, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660533

ABSTRACT

OBJECTIVE: 20-40% of individuals whose seizures are not controlled by anti-seizure medications exhibit manifestations comparable to epileptic seizures (ES), but there are no EEG correlates. These events are called functional or dissociative seizures (FDS). Due to limited access to EEG-monitoring and inconclusive results, we aimed to develop an alternative diagnostic tool that distinguishes ES vs. FDS. We evaluated the temporal evolution of ECG-based measures of autonomic function (heart rate variability, HRV) to determine whether they distinguish ES vs. FDS. METHODS: The prospective study includes patients admitted to the University of Rochester Epilepsy Monitoring Unit. Participants are 18-65 years old, without therapies or co-morbidities associated with altered autonomics. A habitual ES or FDS is recorded during admission. HRV analysis is performed to evaluate the temporal changes in autonomic function during the peri­ictal period (150-minutes each pre-/post-ictal). We determined if autonomic measures distinguish ES vs. FDS. RESULTS: The study includes 53 ES and 46 FDS. Temporal evolution of HR and autonomics significantly differ surrounding ES vs. FDS. The pre-to-post-ictal change (delta) in HR differs surrounding ES vs. FDS, stratified for convulsive and non-convulsive events. Post-ictal HR, total autonomic (SDNN & Total Power), vagal (RMSSD & HF), and baroreflex (LF) function differ for convulsive ES vs. convulsive FDS. HR distinguishes non-convulsive ES vs. non-convulsive FDS with ROC>0.7, sensitivity>70%, but specificity<50%. HR-delta and post-ictal HR, SDNN, RMSSD, LF, HF, and Total Power each distinguish convulsive ES vs. convulsive FDS (ROC, 0.83-0.98). Models with HR-delta and post-ictal HR provide the highest diagnostic accuracy for convulsive ES vs. convulsive FDS: 92% sensitivity, 94% specificity, ROC 0.99). SIGNIFICANCE: HR and HRV measures accurately distinguish convulsive, but not non-convulsive, events (ES vs. FDS). Results establish the framework for future studies to apply this diagnostic tool to more heterogeneous populations, and on out-of-hospital recordings, particularly for populations without access to epilepsy monitoring units.


Subject(s)
Epilepsy , Psychogenic Nonepileptic Seizures , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Heart Rate/physiology , Prospective Studies , Electroencephalography/methods , Epilepsy/diagnosis , Seizures/diagnosis
2.
Neuromodulation ; 26(4): 728-737, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36759231

ABSTRACT

BACKGROUND: Transcranial alternating current stimulation (tACS)-a noninvasive brain stimulation technique that modulates cortical oscillations in the brain-has shown the capacity to enhance working memory (WM) abilities in healthy individuals. The efficacy of tACS in the improvement of WM performance in healthy individuals is not yet fully understood. OBJECTIVE/HYPOTHESIS: This meta-analysis aimed to systematically evaluate the efficacy of tACS in the enhancement of WM in healthy individuals and to assess moderators of response to stimulation. We hypothesized that active tACS would significantly enhance WM compared with sham. We further hypothesized that it would do so in a task-dependent manner and that differing stimulation parameters would affect response to tACS. MATERIALS AND METHODS: Ten tACS studies met the inclusion criteria and provided 32 effects in the overall analysis. Random-effect models assessed mean change scores on WM tasks from baseline to poststimulation. The included studies involved varied in stimulation parameters, between-subject and within-subject study designs, and online vs offline tACS. RESULTS: We observed a significant, heterogeneous, and moderate effect size for active tACS in the enhancement of WM performance over sham (Cohen's d = 0.5). Cognitive load, task domain, session number, and stimulation region showed a significant relationship between active tACS and enhanced WM behavior over sham. CONCLUSIONS: Our findings indicate that active tACS enhances WM performance in healthy individuals compared with sham. Future randomized controlled trials are needed to further explore key parameters, including personalized stimulation vs standardized electroencephalography frequencies and maintenance of tACS effects, and whether tACS-induced effects translate to populations with WM impairments.


Subject(s)
Memory, Short-Term , Transcranial Direct Current Stimulation , Adult , Humans , Memory, Short-Term/physiology , Transcranial Direct Current Stimulation/methods , Cognition/physiology , Brain , Electroencephalography
SELECTION OF CITATIONS
SEARCH DETAIL
...