Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38766072

ABSTRACT

Protein retention expansion microscopy (ExM) retains genetically encoded fluorescent proteins or antibody-conjugated fluorescent probes in fixed tissue and isotropically expands the tissue through a swellable polymer network to allow nanoscale (<70 nm) resolution on diffraction-limited confocal microscopes. Despite numerous advantages ExM brings to biological studies, the full protocol is time-consuming and can take multiple days to complete. Here, we adapted the ExM protocol to the vibratome-sectioned brain tissue of Xenopus laevis tadpoles and implemented a microwave-assisted protocol to reduce the workflow from days to hours. In addition to the significantly accelerated processing time, our microwave-assisted ExM (M/WExM) protocol maintains the superior resolution and signal-to-noise ratio of the original ExM protocol. Furthermore, the M/WExM protocol yields higher magnitude of expansion, suggesting that in addition to accelerating the process through increased diffusion rate of reagents, microwave radiation may also facilitate the expansion process. To demonstrate the applicability of this method to other specimens and protocols, we adapted the microwave-accelerated protocol to whole mount adult brain tissue of Drosophila melanogaster fruit flies, and successfully reduced the total processing time of a widely-used Drosophila IHC-ExM protocol from 6 days to 2 days. Our results demonstrate that with appropriate adjustment of the microwave parameters (wattage, pulse duration, interval, and number of cycles), this protocol can be readily adapted to different model organisms and tissue types to greatly increase the efficiency of ExM experiments.

2.
Brain ; 145(6): 2049-2063, 2022 06 30.
Article in English | MEDLINE | ID: mdl-34927674

ABSTRACT

The mechanisms underlying the complications of mild traumatic brain injury, including post-concussion syndrome, post-impact catastrophic death, and delayed neurodegeneration remain poorly understood. This limited pathophysiological understanding has hindered the development of diagnostic and prognostic biomarkers and has prevented the advancement of treatments for the sequelae of mild traumatic brain injury. We aimed to characterize the early electrophysiological and neurovascular alterations following repetitive mild traumatic brain injury and sought to identify new targets for the diagnosis and treatment of individuals at risk of severe post-impact complications. We combined behavioural, electrophysiological, molecular, and neuroimaging techniques in a rodent model of repetitive mild traumatic brain injury. In humans, we used dynamic contrast-enhanced MRI to quantify blood-brain barrier dysfunction after exposure to sport-related concussive mild traumatic brain injury. Rats could clearly be classified based on their susceptibility to neurological complications, including life-threatening outcomes, following repetitive injury. Susceptible animals showed greater neurological complications and had higher levels of blood-brain barrier dysfunction, transforming growth factor ß (TGFß) signalling, and neuroinflammation compared to resilient animals. Cortical spreading depolarizations were the most common electrophysiological events immediately following mild traumatic brain injury and were associated with longer recovery from impact. Triggering cortical spreading depolarizations in mild traumatic brain injured rats (but not in controls) induced blood-brain barrier dysfunction. Treatment with a selective TGFß receptor inhibitor prevented blood-brain barrier opening and reduced injury complications. Consistent with the rodent model, blood-brain barrier dysfunction was found in a subset of human athletes following concussive mild traumatic brain injury. We provide evidence that cortical spreading depolarization, blood-brain barrier dysfunction, and pro-inflammatory TGFß signalling are associated with severe, potentially life-threatening outcomes following repetitive mild traumatic brain injury. Diagnostic-coupled targeting of TGFß signalling may be a novel strategy in treating mild traumatic brain injury.


Subject(s)
Brain Concussion , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain Concussion/etiology , Humans , Neuroimaging , Rats , Transforming Growth Factor beta/metabolism
3.
Sci Rep ; 10(1): 19734, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184351

ABSTRACT

Many solid-dose oral drug products are engineered to release their active ingredients into the body at a certain rate. Techniques for measuring the dissolution or degradation of a drug product in vitro play a crucial role in predicting how a drug product will perform in vivo. However, existing techniques are often labor-intensive, time-consuming, irreproducible, require specialized analytical equipment, and provide only "snapshots" of drug dissolution every few minutes. These limitations make it difficult for pharmaceutical companies to obtain full dissolution profiles for drug products in a variety of different conditions, as recommended by the US Food and Drug Administration. Additionally, for drug dosage forms containing multiple controlled-release pellets, particles, beads, granules, etc. in a single capsule or tablet, measurements of the dissolution of the entire multi-particle capsule or tablet are incapable of detecting pellet-to-pellet variations in controlled release behavior. In this work, we demonstrate a simple and fully-automated technique for obtaining dissolution profiles from single controlled-release pellets. We accomplished this by inverting the drug dissolution problem: instead of measuring the increase in the concentration of drug compounds in the solution during dissolution (as is commonly done), we monitor the decrease in the buoyant mass of the solid controlled-release pellet as it dissolves. We weigh single controlled-release pellets in fluid using a vibrating tube sensor, a piece of glass tubing bent into a tuning-fork shape and filled with any desired fluid. An electronic circuit keeps the glass tube vibrating at its resonance frequency, which is inversely proportional to the mass of the tube and its contents. When a pellet flows through the tube, the resonance frequency briefly changes by an amount that is inversely proportional to the buoyant mass of the pellet. By passing the pellet back-and-forth through the vibrating tube sensor, we can monitor its mass as it degrades or dissolves, with high temporal resolution (measurements every few seconds) and mass resolution (700 nanogram resolution). As a proof-of-concept, we used this technique to measure the single-pellet dissolution profiles of several commercial controlled-release proton pump inhibitors in simulated stomach and intestinal contents, as well as comparing name-brand and generic formulations of the same drug. In each case, vibrating tube sensor data revealed significantly different dissolution profiles for the different drugs, and in some cases our method also revealed differences between different pellets from the same drug product. By measuring any controlled-release pellets, particles, beads, or granules in any physiologically-relevant environment in a fully-automated fashion, this method can augment and potentially replace current dissolution tests and support product development and quality assurance in the pharmaceutical industry.


Subject(s)
Delayed-Action Preparations , Drug Liberation , Gastric Juice/metabolism , Proton Pump Inhibitors/metabolism , Tablets/chemistry , Chemistry, Pharmaceutical , Humans
4.
Sci Transl Med ; 11(521)2019 12 04.
Article in English | MEDLINE | ID: mdl-31801886

ABSTRACT

Aging involves a decline in neural function that contributes to cognitive impairment and disease. However, the mechanisms underlying the transition from a young-and-healthy to aged-and-dysfunctional brain are not well understood. Here, we report breakdown of the vascular blood-brain barrier (BBB) in aging humans and rodents, which begins as early as middle age and progresses to the end of the life span. Gain-of-function and loss-of-function manipulations show that this BBB dysfunction triggers hyperactivation of transforming growth factor-ß (TGFß) signaling in astrocytes, which is necessary and sufficient to cause neural dysfunction and age-related pathology in rodents. Specifically, infusion of the serum protein albumin into the young rodent brain (mimicking BBB leakiness) induced astrocytic TGFß signaling and an aged brain phenotype including aberrant electrocorticographic activity, vulnerability to seizures, and cognitive impairment. Furthermore, conditional genetic knockdown of astrocytic TGFß receptors or pharmacological inhibition of TGFß signaling reversed these symptomatic outcomes in aged mice. Last, we found that this same signaling pathway is activated in aging human subjects with BBB dysfunction. Our study identifies dysfunction in the neurovascular unit as one of the earliest triggers of neurological aging and demonstrates that the aging brain may retain considerable latent capacity, which can be revitalized by therapeutic inhibition of TGFß signaling.


Subject(s)
Aging/pathology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Signal Transduction , Transforming Growth Factor beta/metabolism , Adult , Aged , Aged, 80 and over , Albumins/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Blood-Brain Barrier/drug effects , Chronic Disease , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Gene Knockdown Techniques , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/physiopathology , Humans , Mice, Transgenic , Middle Aged , Protein Kinase Inhibitors/pharmacology , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...