Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Fish Shellfish Immunol ; 144: 109270, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070587

ABSTRACT

This study discloses the nanoscale silicate platelet-supported nZnO (ZnONSP) applied as novel feed additives in aquaculture. The preparation of the nanohybrid (ZnO/NSP = 15/85, w/w) was characterized by UV-visible spectroscopy, powder X-ray diffraction and transmission electron microscope. The effects of ZnONSP on growth, zinc accumulation, stress response, immunity and resistance to Vibrio alginolyticus in white shrimp (Penaeus vannamei) were \demonstrated. To evaluate the safety of ZnONSP, shrimps (2.0 ± 0.3 g) were fed with ZnONSP containing diets (200, 400 and 800 mg/kg) for 56 days. Dietary ZnONSP did not affect the weight gain, specific growth rate, feed conversion ratio, survival rate, zinc accumulation, and the expression of heat shock protein 70 in tested shrimps. To examine the immunomodulatory effect of ZnONSP, shrimps (16.6 ± 2.4 g) were fed with the same experimental diets for 28 days. Dietary ZnONSP improved the immune responses of haemocyte in tested shrimps, including phagocytic rate, phagocytic index, respiratory burst, and phenoloxidase activity, and upregulated the expression of several genes, including lipopolysaccharide, ß-1,3-glucan binding protein, peroxinectin, penaeidin 2/3/4, lysozyme, crustin, anti-lipopolysaccharide factor, superoxide dismutase, glutathione peroxidase, clotting protein and α-2-macroglobulin. In the challenge experiment, shrimps (17.2 ± 1.8 g) were fed with ZnONSP containing diets (400 and 800 mg/kg) for 7 days and then infected with Vibrio alginolyticus. Notably, white shrimps that received ZnONSP (800 mg/kg) showed significantly improved Vibrio resistance, with a survival rate of 71.4 % at the end of 7-day observation. In conclusion, this study discovers that ZnONSP is a new type of immunomodulatory supplement that are effective on enhancing innate cellular and humoral immunities, and disease resistance in white shrimp.


Subject(s)
Immunity, Innate , Penaeidae , Animals , Dietary Supplements , Diet/veterinary , Disease Resistance , Vibrio alginolyticus/physiology , Zinc/pharmacology
2.
Int J Mol Sci ; 24(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37108187

ABSTRACT

Silver nanoparticles (AgNPs) are remarkably able to eliminate microorganisms, but induce cytotoxicity in mammalian cells, and zinc oxide nanoparticles (ZnONPs) are considered to have a wide bactericidal effect with weak cytotoxicity. In this study, both zinc oxide nanoparticles and silver nanoparticles were co-synthesized on a nano-silicate platelet (NSP) to prepare a hybrid of AgNP/ZnONP/NSP. Ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize the formation of nanoparticles on the NSP. Synthesized ZnONP/NSP (ZnONP on NSP) was confirmed by the absorption peaks on UV-Vis and XRD. AgNP synthesized on ZnONP/NSP was also characterized by UV-Vis, and ZnONP/NSP showed no interference with synthesis. The images of TEM demonstrated that NSP provides physical support for the growth of nanoparticles and could prevent the inherent aggregation of ZnONP. In antibacterial tests, AgNP/ZnONP/NSP exhibited more efficacy against Staphylococcus aureus (S. aureus) than ZnONP/NSP (ZnONP was synthesized on NSP) and AgNP/NSP (AgNP was synthesized on NSP). In cell culture tests, 1/10/99 (weight ratio) of AgNP/ZnONP/NSP exhibited low cytotoxicity for mammalian cells (>100 ppm). Therefore, AgNP/ZnONP/NSP, containing both AgNP and ZnONP, with both strong antibacterial qualities and low cytotoxicity, showed potentially advantageous medical utilizations due to its antibacterial properties.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Animals , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Metal Nanoparticles/chemistry , Silver/pharmacology , Silver/chemistry , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silicates/pharmacology , Silicates/chemistry , Mammals
3.
Fish Shellfish Immunol ; 135: 108673, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36914102

ABSTRACT

Hybrid of nanosilver and nanoscale silicate platelet (AgNSP) is a safe, non-toxic nanomaterial which has been applied in medical use due to its strong antibacterial activity. The application of AgNSP in aquaculture was first proposed in the present study by evaluating the in vitro antibacterial activities against four aquatic pathogens, in vitro effects toward shrimp haemocytes as well as the immune responses and disease resistance in Penaeus vannamei fed with AgNSP for 7 days. For evaluating the antibacterial activities of AgNSP in culture medium, the minimum bactericidal concentration (MBC) values against Aeromonas hydrophila, Edwardsiella tarda, Vibrio alginolyticus and Vibrio parahaemolyticus were 100, 15, 625 and 625 mg/L, respectively. Moreover, the inhibition of pathogen growth over a period of 48 h could be achieved by the appropriate treatment of AgNSP in culturing water. In freshwater containing bacterial size of 103 and 106 CFU/mL, the effective doses of AgNSP against A. hydrophila were 12.5 and 450 mg/L, respectively while the effective doses against E. tarda were 0.2 and 50 mg/L, respectively. In seawater with same bacterial size, the effective doses against V. alginolyticus were 150 and 2000 mg/L, respectively while the effective doses against V. parahaemolyticus were 40 and 1500 mg/L, respectively. For the in vitro immune tests, the superoxide anion production and phenoloxidase activity in haemocytes were elevated after in vitro incubation with 0.5-10 mg/L of AgNSP. In the assessment of dietary supplemental effects of AgNSP (2 g/kg), no negative effect on the survival was found at the end of 7 day feeding trail. In addition, the gene expression of superoxide dismutase, lysozyme and glutathione peroxidase were up-regulated in haemocytes taken from shrimps received AgNSP. The following challenge test against Vibrio alginolyticus showed that the survival of shrimp fed with AgNSP was higher than that of shrimp fed with control diet (p = 0.083). Dietary AgNSP improved the Vibrio resistance of shrimp by increasing 22.7% of survival rate. Therefore, AgNSP could potentially be used as a feed additive in shrimp culture.


Subject(s)
Immunity, Innate , Penaeidae , Animals , Dietary Supplements , Diet , Disease Resistance , Superoxides , Superoxide Dismutase/metabolism , Vibrio alginolyticus/physiology
4.
Polymers (Basel) ; 14(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35054646

ABSTRACT

Through the use of organic/inorganic hybrid dispersants-which are composed of polymeric dispersant and two-dimension nanomaterial graphene oxide (GO)-copper nanoparticles (CuNPs) were found to exhibit nano stability, air-stable characteristics, as well as long-term conductive stability. The polymeric dispersant consists of branched poly(oxyethylene)-segmented esters of trimellitic anhydride adduct (polyethylene glycol-trimethylolpropane-trimellitic anhydride, designated as PTT). PTT acts as a stabilizer for CuNPs, which are synthesized via in situ polymerization and redox reaction of the precursor Cu(CH3COO)2 within an aqueous system, and use graphene oxide to avoid the reduction reaction of CuNPs. The results show that after 30 days of storage the CuNPs/PTT/GO composite film maintains a highly conductive network (9.06 × 10-1 Ω/sq). These results indicate that organic/inorganic PTT/GO hybrid dispersants can effectively maintain the conductivity stability of CuNPs and address the problem of CuNP oxidation. Finally, the new CuNPs/PTT/GO composite film was applied to the electrocardiogram (ECG) smart clothes. This way, a stable and antioxidant-sensing electrode can be produced, which is expected to serve as a long-term ECG monitoring device.

5.
PLoS One ; 16(2): e0247531, 2021.
Article in English | MEDLINE | ID: mdl-33630913

ABSTRACT

Silver nanoparticle (Ag-NP) is well known for its high antibacterial efficacy. However, its toxicity toward mammalian cells is still a concern in clinical applications. The aim of our study was to evaluate the composition effects of Ag-NP supported by silicate nanoplatelet (NSP) with respect to the cytotoxicity and genotoxicity, and was in reference to the poly (styrene-co-maleic anhydride)-supported Ag-NP (Ag-NP/SMA). The NSP at the geometric dimension of averaged 80 x 80 x 1 nm3 was prepared from the exfoliation of natural clays and used to support different weight ratio of Ag-NP. The supporting limitation of NSP on Ag-NP was below the weight ratio of 15/85 (Ag-NP to NSP), and the detached Ag-NP from the Ag-NP/NSP (30/70) and Ag-NP/SMA hybrids were observed by TEM. Ames test was performed to assess the mutagenic potential of different compositions of Ag-NP/NSP, only Ag-NP/NSP (30/70) and Ag-NP/SMA hybrids exhibited mutagenicity when the concentration was 1.09 ppm or higher. In viewing of cytotoxicity using MTT tests toward HaCaT cells, the IC30 of Ag-NP/NSP (1/99, 7/93 and 15/85) were 1416.7, 243.6, and 148.9 ppm respectively, while Ag-NP/SMA was 64.8 ppm. The IC30 of Ag-NP/NSP (1/99, 7/93 and 15/85) were at least 833, 78 and 7 folds higher than their corresponding minimum inhibitory concentrations (MIC) respectively, and whereas Ag-NP/SMA was 6.4 folds. The Ag-NP/NSP and Ag-NP/SMA hybrids had been further investigated for genotoxicity by chromosomal aberrations and in vivo micronucleus assay within the concentration at IC10 and IC30, only Ag-NP/SMA showed a higher frequency of chromosomal aberrations. Our findings indicated that the viability of utilizing the NSP to maintain Ag-NP for antimicrobial activity, and the high-surface area of NSP served as an excellent support for associating Ag-NP and consequently rendering the mitigation of the inherent toxicity of Ag-NP in clinical uses.


Subject(s)
Anti-Infective Agents/toxicity , Clay/chemistry , Metal Nanoparticles/toxicity , Silicates/chemistry , Silver/toxicity , Cell Survival/drug effects , HaCaT Cells , Humans
6.
Toxins (Basel) ; 12(10)2020 09 29.
Article in English | MEDLINE | ID: mdl-33003487

ABSTRACT

Nano-silicate platelets (NSP), an exfoliated product from natural clays, have been validated for biosafety and as an effective supplement to alleviate mycotoxicosis. Since NSP induced noticeable cell death, we therefore investigated further the mechanism of cytotoxicity caused by NSP. Exposure to NSP impaired membrane integrity and caused cell death in a dose-dependent manner. Reactive oxygen species (ROS) generation other than of NADH oxidase origin, and subcellular interactions by internalized NSP also contributed to NSP-induced cell death. NSP persistently provoked receptor-interacting protein 1 Ser/Thr (RIP1) kinase and caspase 6 and 3/7 activation without altering caspase 8 activity and induced evident chromatolysis of necrosis in the later stage. These events proceeded along with increased ER stress and mitochondrial permeability, to final Cyt-C (Cytochrome C) release and AIF (apoptosis inducing factor) translocation, a hallmark of cell necroptosis. Fluorescent probing further manifested NSP traffic, mostly adherence on the cell surfaces, or via internalization, being compartmentalized in the nuclei, cytosols, and mitochondria. Pharmacological approaches with specific inhibitors suggested that endocytosis and particularly RIP1 kinase provocation mediate NSP-induced cell death independent of caspase activation. In conclusion, the necroptotic process contributes to most of the cell death induced by NSP due to membrane interactions/impaired integrity, ROS generation, and subcellular interactions by internalized NSP.


Subject(s)
Fibroblasts/drug effects , Nanoparticles/toxicity , Necroptosis/drug effects , Silicon Dioxide/toxicity , Animals , Dose-Response Relationship, Drug , Endocytosis , Endoplasmic Reticulum Stress/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , NIH 3T3 Cells , Reactive Oxygen Species/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Time Factors
7.
Polymers (Basel) ; 12(2)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098145

ABSTRACT

A new root canal sealer was developed based on urethane acrylates using polycarbonate polyol (PCPO), a macrodiol prepared in the consumption of carbon dioxide as feedstock. The superior mechanical properties and biostability nature of PCPO-based urethane acrylates were then co-crosslinked with a difunctional monomer of tripropylene glycol diarylate (TPGDA) as sealers for resin matrix. Moreover, nanoscale silicate platelets (NSPs) immobilized with silver nanoparticles (AgNPs) and/or zinc oxide nanoparticles (ZnONPs) were introduced to enhance the antibacterial effect for the sealers. The biocompatibility and the antibacterial effect were investigated by Alamar blue assay and LDH assay. In addition, the antibacterial efficiency was performed by using Enterococcus faecalis (E. faecalis) as microbial response evaluation. These results demonstrate that the PCPO-based urethane acrylates with 50 ppm of both AgNP and ZnONP immobilized on silicate platelets, i.e., Ag/ZnO@NSP, exhibited great potential as an antibacterial composite for the sealer of root canal obturation.

8.
ACS Appl Mater Interfaces ; 11(28): 25090-25099, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31117438

ABSTRACT

In this study, a transition-metal selenide, vanadium diselenide (VSe2), with various morphologies was synthesized by employing a surfactant-free hydrothermal method under varied temperature conditions (190-220 °C). Although the physical properties of VSe2 have been studied before, only limited morphological change or application were explored. This study, for the first time, applied VSe2 as the electrocatalytic counter electrode (CE) in dye-sensitized solar cells (DSSCs) and showed an attractive cell efficiency. The mechanism of forming the tunable VSe2 morphologies is proposed. The evaluation of solar cell efficiency shows the correlation between morphology and electrocatalytic properties. It was further shown that VSe2-200 with the cauliflower-like morphology shows the highest cell performance of DSSC with an efficiency of 9.23 ± 0.07% under 1 sun irradiance, superior to that of the Pt-based DSSC (8.48 ± 0.08%). An electrochemical technique equipped with a rotating disk electrode system was introduced to confirm the high electrocatalytic performance with this particular morphology. The optimized VSe2 demonstrated good long-term stability with 78% retention after 500 cycles of the consecutive cyclic voltammetry, compared to 60% for the Pt CE. The control in morphology in vanadium diselenide synthesis and its usage in Pt-free CE DSSC have advanced the progress in electrochemistry.

9.
ACS Appl Bio Mater ; 2(11): 4978-4985, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-35021497

ABSTRACT

Nanotechnology has attracted much attention recently because of its agricultural applications. In this study, we analyzed the ability of two potential nanomaterials (NMs), nanoscale silica platelets (NSP) and silver nanoparticles on nanoscale silica platelets (AgNP/NSP), to control Fusarium wilt [caused by Fusarium oxysporum f. sp. niveum (Fon)] disease in watermelon. Both AgNP/NSP and NSP significantly reduced Fon mycelial growth and spore viability. In addition, AgNP/NSP decreased the mycelium viability at concentrations of 150 and 200 ppm. Scanning and transmission electron microscopy showed significant morphological effects on Fon cells, such as increased roughness and interior hollowing after AgNP/NSP and NSP treatments. Further, fluorescence staining experiments showed that a concomitant increase in membrane permeability occurred after treatment with NMs. The biochemical effects of NM treatment included a significant reduction in secreted cellulase activity. Interestingly, the addition of cysteine as a reducing agent decreased effects of NSP on Fon spores, suggesting suppression of Fon spore development attributable to oxidative stress. Taken together, these results indicate that AgNP/NSP and NSP may potentially serve as nanofungicides for future control of Fusarium wilt and other fungal diseases.

10.
Nanomaterials (Basel) ; 10(1)2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31892169

ABSTRACT

This study investigated films with remarkably high electrical conductivity after they were easily prepared from organic/inorganic nanohybrid solutions containing an organic polymeric dispersant and two-dimensional nanoscale silicate platelets as the inorganic stabilizer dispersed with silver nanoparticles. Transmission electron microscopy shows that the production of silver nanoparticles synthesized by the in situ chemical reduction of AgNO3 in an aqueous solution by N,N-dimethylformamide results in an average silver nanoparticle diameter of circa 20 nm. Thin films of silver nanoparticles were prepared on a 1-µm-thick film with a low sheet resistance of 8.24 × 10-4 Ω/sq, achieved through the surface migration of silver nanoparticles and prepared by sintering at 300 °C to form an interconnected network. This was achieved with a silver nanoparticle content of 5 wt%, using nanoscale silicate platelets/polyoxyethylene-segmented polyimide/AgNO3 at a weight ratio of 1:10:35. During sintering, the color of the hybrid film changed from gold to milky white, suggesting the migration of silver nanoparticles and the formation of an interconnected network. The results show promise for the fabrication of novel silver-based electrocardiogram electrodes and a flexible wireless electrocardiogram measurement system for wearable electronics.

11.
ACS Appl Mater Interfaces ; 10(44): 38394-38403, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30360070

ABSTRACT

A family of new polymeric dispersants, branched poly(oxyethylene)-segmented esters of trimellitic anhydride adduct (polyethylene glycol-trimethylolpropane-trimellitic anhydride, designated as PTT), were synthesized and utilized to homogeneously disperse TiO2 nanoparticles. The weight fraction of poly(oxyethylene)-segment in the dispersants and the molecular architecture in favoring the branched shape are two predominant factors for designing the effective dispersants. In particular, the poly(oxyethylene) block of 1000 g/mol from PEG1000 as the starting material and a total molecular weight of 12 000 g/mol have constituted the polymeric dispersants for the best performance for homogenizing TiO2 nanoparticles. The dispersant structures were characterized by using Fourier-transform infrared spectroscopy, acid value determination, and gel permeation chromatography. The TiO2 dispersibility was evaluated by dynamic light scattering and transmission electron microscopy. The synthesized dispersants were utilized to homogenize the as-prepared TiO2, further fabricated into films of photoanodes for dye-sensitized solar cells (DSSCs). The ultimate performance of DSSC was measured to be 8.17 ± 0.13% for the device efficiency (η) which was significantly higher than the conventional TiO2 photoanode at η = 7.14 ± 0.12%. The photoanode film was characterized by X-ray diffraction, Brunauer-Emmett-Teller surface area, and dye-loading amount measurements. The kinetics of photogenerated electron in the photoanode, including electron lifetime and electron transit time of the film, was studied via electrochemical impedance spectroscopy, intensity-modulated photocurrent spectroscopy, and intensity-modulated photovoltage spectroscopy.

12.
J Agric Food Chem ; 65(31): 6564-6571, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28712299

ABSTRACT

The efficacy of nanosilicate clay platelets (NSCP), exfoliated silicates from natural montmorillonites, as a feed additive for ameliorating fumonisin B1 (FB1) toxicosis was evaluated. Toxicological mechanisms by NSCP were examined through proteomic and biochemical analyses. Dietary supplementation with NSCP at a low level of 40 mg/kg of feed improved growth performances in chickens with respect to FB1 toxicosis. Other issues of ameliorated symptoms including serum and/or hepatic aspartate aminotransferase activity, oxidative stress indicators, and sphinganine/sphingosine ratio, a hallmark of FB1 toxicosis, were considered. Chickens with NSCP inclusion alone at 1000 mg/kg of feed exhibited no changes in hepatic histology, oxidative status, and serum parameters and even had a higher feed intake. Proteomic analysis with liver tissues identified 45 distinct proteins differentially affected by FB1 and/or NSCP, in which proteins involved in thiol metabolism and redox regulation, glycolysis, carcinogenesis, and detoxification by glutathione S-transferase were promoted by FB1, whereas NSCP caused differential changes of protein abundances related to methionine/cysteine and choline/glycine interconversion for glutathione synthesis, redox regulation by peroxiredoxin, toxin/metabolite delivery by albumin, glycolysis, tricarboxylic acid cycle, adenosine triphosphate (ATP) synthesis, and chaperon escort for endoplasmic reticulum stress relief. Functional analyses confirmed the enhancement of hepatic metabolic processes for ATP and NAD(P)H production to meet the need for detoxification, antioxidative defense, and toxin/metabolite clearance by FB1 or NSCP ingestion. On the basis of the amelioration of FB1 toxicosis, global profile of hepatic protein expressions, and validated toxicological mechanisms, NSCP were concluded as a safe and effective agent for FB1 detoxification.


Subject(s)
Aluminum Silicates/metabolism , Animal Feed/analysis , Chickens/metabolism , Food Additives/metabolism , Fumonisins/toxicity , Mycotoxins/toxicity , Silicates/metabolism , Aluminum Silicates/adverse effects , Animals , Chickens/growth & development , Clay , Fumonisins/metabolism , Inactivation, Metabolic , Liver/metabolism , Mycotoxins/metabolism , Oxidative Stress , Silicates/adverse effects
13.
Methods Mol Biol ; 1600: 85-94, 2017.
Article in English | MEDLINE | ID: mdl-28478559

ABSTRACT

Algal toxin is a unique type of toxin generated with harmful algal blooms in water bodies. This phenomenon is worsened by eutrophication caused by excessive discharge of nutrients into surface water bodies. Since algal toxins are hard to remove after they enter the water treatment processes, an efficient method is required to inhibit the growth of algal cells, to settle the cells at the bottom of the water body and to removes the toxin from the water. We report an efficient way to prepare a novel nanohybrid material, i.e., magnetic nanosilicate platelet (MNSP), and its effects on the removal of microcystin toxins as well as the cells of Microcystis aeruginosa. MNSP was fabricated by a special treatment of a clay mineral, montmorillonite, and then its surface was decorated with magnetite nanoparticles by in situ synthesis. The nanohybrid can efficiently inhibit the growth of M. aeruginosa-a typical species that can generate one of the most notorious algal toxins, i.e., microcystins. Algal cells can be settled with minimal 500 ppm MNSP, and the turbidity can be reduced by more than 67%. The removal of microcystin-LR (MC-LR) was as high as 99.39% at an concentration of 100 ppm, while the pristine nanosilicate platelet could only remove 36.84% at the same dosage.


Subject(s)
Microcystins/chemistry , Microcystis/chemistry , Harmful Algal Bloom , Marine Toxins , Microcystis/isolation & purification , Water Microbiology , Water Purification
14.
Colloids Surf B Biointerfaces ; 152: 459-466, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28189097

ABSTRACT

The ternary nanohybrids of silver nanoparticles (AgNPs) in combination with silicate nanoplatelets (NSP) and thermally sensitive poly(N-isopropylacrylamide) (PNiPAAm) were fabricated for antibacterial applications. PNiPAAm were chemically grafted on the NSP by atom-transfer radical polymerization (ATRP) via polymerizing N-isopropylacrylamide monomers with sol-gel linkers (BBTES). The nanoparticles of AgNPs then were adsorbed on NSP-PNiPAAm nanosheets through in situ reduction reaction of AgNO3 in aqueous dispersion. The particle sizes of AgNPs were estimated to be 7-12nm in diameter with different composition ratios of AgNPs to NSP-PNiPAAm, evaluated by transmission electron microscope (TEM). The nanohybrids of AgNP/NSP-PNiPAAm exhibited the unique property of lowest critical solution temperature (LCST) at 32°C. The thermo-responsive antibacterial efficacy of the ternary nanohybrids was demonstrated by Bacillus subtilis (B. subtilis) and Escherichia coli (E. coli) at lower than the LCST (28°C) and higher than the LCST (37°C). The result show that the great antibacterial ability was observed in the hydrophilic bacteria (B. subtilis) at 28°C. In contrast, the excellent antibacterial ability was found in the hydrophobic bacteria (E. coli) at 37°C, due to the surface energy modulation of AgNP/NSP-PNiPAAm. The tailoring of silver-containing ternary nanohybrids allow the new antibacterial nanomaterials to selectively affect the surface of bacteria by varying temperature.


Subject(s)
Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Silver/chemistry , Acrylic Resins/chemistry , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Escherichia coli/drug effects , Polymerization , Silver/pharmacology , Temperature
15.
ACS Appl Mater Interfaces ; 8(24): 15267-78, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27248206

ABSTRACT

A polymeric ionic liquid, poly(oxyethylene)-imide-imidazolium selenocyanate (POEI-IS), was newly synthesized and used for a multifunctional gel electrolyte in a quasi-solid-state dye-sensitized solar cell (QSS-DSSC). POEI-IS has several functions: (a) acts as a gelling agent for the electrolyte of the DSSC, (b) possesses a redox mediator of SeCN(-), which is aimed to form a SeCN(-)/(SeCN)3(-) redox couple with a more positive redox potential than that of traditional I(-)/I3(-), (c) chelates the potassium cations through the lone pair electrons of the oxygen atoms of its poly(oxyethylene)-imide-imidazolium (POEI-I) segments, and (d) obstructs the recombination of photoinjected electrons with (SeCN)3(-) ions in the electrolyte through its POEI-I segments. Thus, the POEI-IS renders a high open-circuit voltage (VOC) to the QSS-DSSC due to its functions of b-d and prolongs the stability of the cell due to its function of a. The QSS-DSSC with the gel electrolyte containing 30 wt % of the POEI-IS in liquid selenocyanate electrolyte exhibited a high VOC of 825.50 ± 3.51 mV and a high power conversion efficiency (η) of 8.18 ± 0.02%. The QSS-DSSC with 30 wt % POEI-IS retained up to 95% of its initial η after an at-rest stability test with the period of more than 1,000 h.

16.
ACS Appl Mater Interfaces ; 8(1): 411-8, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26686424

ABSTRACT

A new class of nanohybrids composed of structurally exfoliated silicate platelets and magnetic iron oxide nanoparticles was synthesized and shown to be capable of capturing microbes in liquid microbiological media. Nanoscale silicate platelets with an approximate thickness of 1.0 nm were prepared from the naturally occurring mineral clays montmorillonite and mica; these clays yielded platelets with lateral dimensions on the order of 80-100 nm and 300-1000 nm, respectively. The magnetic Fe3O4 nanoparticles, approximately 8.3 nm in diameter, were coated in situ onto the silicates during the synthesis process, which involved the coprecipitation of aqueous Fe(2+)/Fe(3+) salts. Owing to the high surface area-to-volume ratios and the presence of ionically charged groups (i.e., ≡SiO(-)Na(+)), the silicate nanoplatelets exhibited intense noncovalent bonding forces between Fe3O4 nanoparticles and the surrounding microorganisms. The Fe3O4-on-nanoplatelet nanohybrids enabled the entrapment of bacterial cells in liquid microbiological media. These captured bacteria formed bacterial aggregates on the order of micrometers that became physically maneuverable under a magnetic field. This phenomenon was demonstrated with Staphylococcus aureus in liquid microbiological media by physically removing them using a magnetic bar; in two experimental examples, bacterial concentrations were reduced from 10(6) to 10(2) and from 10(4) to 10(0) CFU/mL (colony formation unit/mL con). Under a scanning electron microscope, these bacteria appeared to have rough and wrinkled surfaces due to the accumulated silicate platelets. Furthermore, the external application of a high-frequency magnetic field completely destroyed these aggregated microbes by the magnetically induced heat. Hence, the newly developed nanohybrids were shown to be viable for physically capturing microbes and also for potential hyperthermia treatment applications.


Subject(s)
Aluminum Silicates/pharmacology , Bacteria/drug effects , Magnetics/methods , Aluminum Silicates/chemistry , Chemical Precipitation , Clay , Colony Count, Microbial , Escherichia coli/drug effects , Escherichia coli/ultrastructure , Ferric Compounds/chemistry , Hot Temperature , Magnetic Fields , Microbial Viability/drug effects , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Silicates/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/ultrastructure , X-Ray Diffraction
17.
Nanotechnology ; 26(46): 465702, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26502095

ABSTRACT

Highly electrically conductive films were prepared by coating organic/inorganic nanohybrid solutions with a polymeric dispersant and exfoliated mica nanosheets (Mica) on which silver nanoparticles (AgNPs) had been dispersed in various components. Transmission electronic microscopy showed that the synthesized AgNPs had a narrow size distribution and a diameter of approximately 20 nm. Furthermore, a 60 µm thick film with a sheet resistance as low as 4.5 × 10(-2) Ω/sq could be prepared by controlling the heating temperature and by using AgNPs/POE-imide/Mica in a weight ratio of 20:20:1. During the heating process, the surface color of the hybrid film changed from dark golden to white, suggesting the accumulation of the AgNPs through surface migration and their melting to form an interconnected network. These nanohybrid films have potential for use in various electrically conductive devices.

18.
ACS Appl Mater Interfaces ; 7(20): 10771-8, 2015 May 27.
Article in English | MEDLINE | ID: mdl-25938175

ABSTRACT

The nano silicate platelets (NSPs) of 100 × 100 × 1 nm(3) in dimension were previously derived from the exfoliation of naturally occurring sodium montmorillonite clay, and their affinity to the surface of bacteria was revealed. The unique characteristics of ionic charges (≡Si-O-Na(+)) and the presence of siloxanol functionalities (≡Si-OH) allowed the organic modification of NSP to form NSP-tethering poly(hydroxyethyl methacrylate) (PHEMA) pendants through a sol-gel and living polymerization. By attaching nathphalimide-type fluorescence onto NSP-PHEMA, a new class of fluorescent organic-inorganic hybrid (NSP-PHEMA-HA), was prepared and its photoluminescence (PL) and bacterial trapping properties were characterized. The investigation of PL emission revealed that the fluorescent NSP hybrids could be used to detect bacteria and possess the potential for the biosensor applications.


Subject(s)
Biosensing Techniques/instrumentation , Escherichia coli/isolation & purification , Nanoparticles/chemistry , Polyhydroxyethyl Methacrylate/chemistry , Silicates/chemistry , Spectrometry, Fluorescence/methods , Equipment Design , Equipment Failure Analysis , Fluorescent Dyes/chemistry , Ions , Nanoparticles/ultrastructure
19.
PLoS One ; 9(11): e112290, 2014.
Article in English | MEDLINE | ID: mdl-25383881

ABSTRACT

Nanosilicate platelets (NSP), the form of natural silicate clay that was exfoliated from montmorillonite (MMT), is widely used as a feed additive for its high non-specific binding capacity with mycotoxins such as fumonisin B1 (FB1), and has been evaluated its safety for biomedical use including cytotoxicity, genotoxicity, and lethal dosage (LD). In the study, we further examined its toxicity on the development of CD1 mouse embryos and its capacity to prevent teratogenesis-induced by FB1. In vitro cultures, NSP did not disturb the development and the quality of intact pre-implantation mouse embryos. Further, newborn mice from females consumed with NSP showed no abnormalities. NSP had an unexpected high adsorption capacity in vitro. In contrast to female mice consumed with FB1 only, a very low residual level of FB1 in the circulation, reduced incidence of neutral tube defects and significantly increased fetal weight were observed in the females consumed with FB1 and NSP, suggesting a high alleviation effect of NSP on FB1 in vivo. Furthermore, FB1 treatment disturbed the gene expression of sphingolipid metabolism enzymes (longevity assurance homolog 5, LASS 5; sphingosine kinase 1, Sphk1; sphingosine kinase 2, Sphk2; sphingosine 1- phosphate lyase, Sgpl1; sphingosine 1-phosphate phosphatase, Sgpp1) in the maternal liver, uterus, fetus, and placenta, but NSP administration reversed the perturbations. Based on these findings, we conclude that NSP is a feasible and effective agent for supplementary use in reducing the toxicity of FB1 to animals.


Subject(s)
Embryonic Development/drug effects , Fumonisins/antagonists & inhibitors , Fumonisins/toxicity , Nanostructures , Silicates/chemistry , Silicates/pharmacology , Adsorption , Animals , Blastocyst/drug effects , Cytotoxins/antagonists & inhibitors , Cytotoxins/chemistry , Cytotoxins/toxicity , Female , Fumonisins/chemistry , Male , Mice
20.
ACS Appl Mater Interfaces ; 6(22): 20324-33, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25307230

ABSTRACT

A tricomponent nanohybrid dispersion in water comprising silver nanoparticles (AgNP), nanometer-thick silicate platelets (NSP), and water-based polyurethane (PU) was developed for surface coating on orthopedic metal plates. The previously developed AgNP-on-NSP nanohybrid was homogeneously blended into a selected waterborne PU dispersion at varied weight ratios from 1/0.1 to 1/10 (w/w). PU was used to adhere the Ag nanohybrid to the metal surface. The resultant dispersions were analyzed and found to contain AgNP 2-18 nm in diameter and characterized by using UV absorption and TEM micrograph. The subsequent coating of AgNP/NSP-PU dispersion generated a film of 1.5 µm thickness on the metal plate surface, further characterized by an energy dispersive spectroscope (EDS) to show the homogeneous distribution of Ag, Si, and C elements on the metal plates. The surface antimicrobial efficacy was proven for the coating composition of AgNP/NSP to PU ranging from 1/1 to 1/5 by weight ratio but irrelevant to the thickness of the coated materials. The metal plate coated with the high Ag content at 1/1 (w/w) ratio was shown to have very low cytotoxicity toward the contacted mammal fibroblasts. Overall, the optimized tricomponent Ag/silicate/PU in water dispersion from 1/2 to 1/3 (w/w) could generate a stable film on a metal surface exhibiting both antimicrobial and biocompatible properties. The facile coating technique of the AgNP/NSP in waterborne PU is proven to be viable for fabricating infection- and cytotoxicity-free medical devices.


Subject(s)
Anti-Infective Agents/chemistry , Coated Materials, Biocompatible/chemistry , Polyurethanes/chemistry , Silicates/chemistry , Silver/chemistry , Stainless Steel/chemistry , Animals , Anti-Infective Agents/pharmacology , BALB 3T3 Cells , Cell Survival/drug effects , Coated Materials, Biocompatible/pharmacology , Metal Nanoparticles/chemistry , Mice , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Staphylococcus aureus/drug effects , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...